Acción in vitro de la cafeína en anillos de arteria mamaria interna utilizada en cirugía de revascularización cardiaca

  • Darío Echeverry Laboratorio de Investigación en Función Vascular, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, D.C., Colombia
  • Félix R. Montes Laboratorio de Investigación en Función Vascular, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, D.C., Colombia
  • Alexandra Delgadillo Laboratorio de Investigación en Función Vascular, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, D.C., Colombia
  • Marcela Beltrán Laboratorio de Investigación en Función Vascular, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, D.C., Colombia
  • Lorena Buitrago Laboratorio de Investigación en Función Vascular, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, D.C., Colombia
Palabras clave: cafeína/uso terapéutico, revascularización miocárdica, vasodilatación, aorta, ateroesclerosis, endotelio, acetilcolina

Resumen

Introducción. El efecto vasodilatador de la cafeína en las arterias de modelos animales ya ha sido demostrado. Se desconocen estudios con la misma metodología in vitro utilizando arterias humanas.
Objetivos. Evaluar los efectos vasoactivos in vitro de la cafeína en la arteria mamaria interna de humanos.
Materiales y métodos. Se utilizaron 80 anillos de arteria mamaria interna (n=20 pacientes).
La funcionalidad del endotelio se evaluó con acetilcolina a una concentración de 3,16x10-6M, de nitroglicerina con dosis acumulativas de 10 -11 M a 10 -4 M y de cafeína con concentraciones acumulativas de 10 -8 M a 10-4 M.
Resultados. La nitroglicerina indujo un porcentaje máximo de relajación de 87,4±12,3%, la cafeína, de 86,9±21,0% en arterias con endotelio funcional y de 71,6±28,6% en arterias con disfunción endotelial. No se encontraron diferencias entre los tres grupos ( p=0,289). Tampoco se encontraron diferencias en la EC 50 en arterias con endotelio funcional (1,66x10 -5 ±1,57x10 -5 M) y arterias disfuncionales (7,75x10 -5 ±14,64x10 -5 M). La nitroglicerina resultó más potente que la cafeína (EC 50 = 4,30x10 -9 ±4,35x10 -9 M) ( p=0,013).
Conclusiones. Aunque la nitroglicerina fue un vasodilatador más potente, la cafeína tuvo un fuerte efecto vasodilatador arterial in vitro independientemente de la funcionalidad del endotelio en arterias humanas.

Descargas

La descarga de datos todavía no está disponible.

Referencias

1. Ascherio A, Chen H, Schwarzschild MA, Zhang SM, Colditz GA, Speizer FE. Caffeine, postmenopausal estrogen, and risk of Parkinson´s disease. Neurology. 2003;60:790-5.
2. Bruce MS, Lader M. Caffeine abstention in the management of anxiety disorders. Psychol Med. 1989;19: 211-4.
3. Klag MJ, Wang NY, Meoni LA, Brancati FL, Cooper LA, Liang KY, et al. Coffee intake and risk of hypertension: the Johns Hopkins Precursors Study. Arch Intern Med. 2002;162:657-62.
4. James JE. Critical review of dietary caffeine and blood pressure: A relationship that should be taken more seriously? Psychosom Med. 2004;66:63-71.
5. Temple ME, Luzier AB, Kazierad DJ. Homocysteine as a risk factor for atherosclerosis. Ann Pharmacother. 2000;34:57-65.
6. Brugada P, Gursoy S, Brugada J, Andries E. Investigation of palpitations. Lancet. 1993;341:1254-8.
7. Grobbee DE, Rimm EB, Giovannucci E, Colditz G, Stampfer M, Willett W. Coffee, caffeine, and cardio-vascular disease in men. N Engl J Med. 1990;323:1026- 32.
8. Tverdal A, Stensvold I, Solvoll K, Foss PO, Lund-Larsen P, Bjartveit K. Coffee consumption and death from coronary heart disease in middle aged Norwegian men and women. BMJ. 1990;300:566-9.
9. Wilson PW, Garrison RJ, Kannel WB, McGee DL, Caselli WP. Is coffee consumption a contributor to cardiovascular disease? Insights from the Framingham Study. Arch Intern Med. 1989;149:1169-72.
10. Woodward M, Tunstall-Pedoe H. Coffee and tea consumption in the Scottish Heart Health Study follow up: conflicting relations with coronary risk factors, coronary disease, and all cause mortality. J Epidemiol Community Health. 1999;53:481-7.
11. Corti R, Binggeli C, Sudano I, Spieker L, Hanseler E, Ruschitzka F, et al. Coffee acutely increases sym-pathetic nerve activity and blood pressure indepen-dently of caffeine content role of habitual versus non-habitual drinking. Circulation. 2002;106:2935-40.
12. Vanhoutte PM, Perrault LP, Vilaine JP. Endothelial dysfunction and vascular disease. In: Rubanyi GM and Dzau VJ Eds. The endothelium in clinical practice. Source and target of novel therapies. New York: Marcel Dekker, Inc.; 1997. p. 265-89..  13. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of smooth muscle by acetylcholine. Nature. 1980;288:373-6.
14. Habib JB, Bossaller C, Wells S, Williams C, Morriset JD, Henry PD. Preservation of endothelium-dependent vascular relaxation in cholesterol fed rabbit by treatment with the calcium blocker PN200110. Cir Res. 1986;58:305-9.
15. Hatano Y, Mizumoto K, Yoshiyama T, Yamamoto M, Iranami H. Endothelium-dependent and -indepen-dent vasodilation of isolated rat aorta induced by caf-feine. Am J Physiol. 1995;269:H1679-84.
16. Watanable C, Yamamoto H, Hirano K, Kobayashi S, Kanaide H. Mechanisms of caffeine- induced contraction and relaxation of rat aortic smooth muscle. J Physiol.1992;456:193-213.
17. Sekiguchi F, Miyake Y, Kashimoto T, Sunano S. Unaltered caffeine-induced relaxation in the aorta of stroke-prone spontaneously hypertensive rats (SHRSP). J Smooth Muscle Res. 2002;38:11-22.
18. Ahn HY, Karaki H, Urakawa N. Inhibitory effects of caffeine on contractions and calcium movement in vascular and intestinal smooth muscle. Br J Pharmacol. 1988;93:267-74.
19. Huraux C, Makita T, Montes F, Szlam F, Levy JH. A comparative evaluation of the effects of multiple vasodilators on human internal mammary artery. Anes-thesiology. 1998;88:1654-9.
20. Tsuda A, Kenichi A, Huraux C, et al. The in vitro reversal of histamine - induced vasodilatation in the human internal mammary artery. Anesth Analg. 2001;93:1453-9.
21. He G, Buxton BF, Rosenfeldt FL, Wilson A, Angus JA. Weak beta-adrenoreceptor mediated relaxation in the human internal mammary artery. J Thorac Cardiovasc Surg. 1989;97:259-66.
22. Umemura T, Ueda K, Nishioka K, Hidaka T, Takemoto H, Nakamura S, et al. Effects of acute administration of caffeine on vascular function. Am J Cardiol. 2006;98: 1538-41.
23. Riksen NP, Franke B, van den Broek P, Smits P, Rongen GA. The 1976C>T polymorphism in the adenosine A2A receptor gene does not affect the vasodilator response to adenosine in humans in vivo. Pharmacogenet Genomics. 2007;17:551-4.
24. Daly JW. Mechanisms of action of caffeine. En: Garattini S, editor. Caffeine, coffee and health. New York: Raven Press, Ltd.; 1993. p. 97-150.
25. Pincomb GA, Lovallo WR, McKey BS, Sung BH, Passey RB, Everson SA, et al. Acute blood pressure elevations with caffeine in men with bordenline systemic hypertension. Am J Cardiol. 1996;77:270-4.
26. Vlachopoulos Ch, Hirata K, O´Rourke MF. Pressure- altering agents affect central aortic pressures more than is apparent from upper limb measurements in hypertensive patientes: role of arterial wave reflections. Hypertension. 2001;38:1456-60.  27. Vlachopoulos Ch, Hirata K, Stefanadis C, Toutouzas P, O´Rourke MF. Caffeine increases aortic stiffness in hypertensive patients. Am J Hypertens. 2003;16:63-6.
28. Thuringer D, Sauve R. A patch-clamp study of the Ca2+ mobilization from internal store in bovine aortic endothelium cells. I. Effects of caffeine on intracellular Ca 2+ stores. J Membr Biol. 1992;130:125-37.
29. Bryson SE, Rodger IW. Effects of phosphodiesterase inhibitors on normal and chemically-skinned isolated airway smooth muscle. Br J Pharmacol. 1987;92:673-81.
30. Shahid M, Rodger W. Chronotropic and inotropic actions of amrinone, carbazeran and isobutylmethyl xan-thine: role of phosphodiesterase inhibition. Br J Pharmacol. 1989; 98:291-301.
31. Van der Bet V, Beny JL. Mechanisms controlling caffeine- induced relaxation of coronary artery of the pig. Br J Pharmacol. 1991;103:1877-82.
32. Martin C, Dacquet C, Mironneau C, Mironneau J. Caffeine-induced inhibition of calcium channel current in cultured smooth muscle cells from pregnant rat myo-metrium. Br J Pharmacol. 1989;98:493-8.
33. Nishikori K, Maeno H. Close relationship between adenosine 3,5-monophosphate-dependent endog-enous phosphorylation of a specific protein and stimu-lation of calcium uptake in rat uterine microsomes. J Biol Chem. 1979;254:6099-106.
34. Ahn HY, Karaki H, Urakawa N. Inhibitory effects of caffeine on contractions and calcium movement in vas-cular and intestinal smooth muscle. Br J Pharmacol. 1988;93:267-74.
35. López-Jaramillo P, González MC, Palmer RMJ, Moncada S. The crucial role of physiological Ca 2a concentrations in the production of endothelial nitric oxide and the control of vascular tone. Br J Pharmacol. 1990;101:489-93.
36. Cox MM. Biosignaling. In: Lehninger AL, Nelson DL, Cox MM, Lehninger AL, editors. Principles of Biochem-istry. New York: Worth Publishers; 2000. p. 411-61
37. Ignarro LJ, Burke TM, Wood M, Wolin S, Kadowitz PJ. Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J Pharmacol Exp Ther. 1984;228:682-90.
 
Cómo citar
Echeverry, D., Montes, F., Delgadillo, A., Beltrán, M., & Buitrago, L. (1). Acción in vitro de la cafeína en anillos de arteria mamaria interna utilizada en cirugía de revascularización cardiaca. Biomédica, 28(2), 298-304. https://doi.org/10.7705/biomedica.v28i2.101
Sección
Comunicación breve