Análisis de micromatrices de ADN revela genes asociados a metástasis en líneas celulares de cáncer de próstata de rata

  • Ismael Reyes Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
  • Raj Tiwari Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
  • Jan Geliebter Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
  • Niradiz Reyes Department of Basic Sciences, School of Medicine, Universidad de Cartagena, Cartagena, Colombia
Palabras clave: carcinoma, metástasis de la neoplasia, expresión génica, marcadores biológicos, matriz extracelular, análisis de micromatrices

Resumen

Introducción. Los mecanismos moleculares y celulares involucrados en la progresión del cáncer de próstata hacia un fenotipo metastásico no son bien entendidos. El análisis molecular de líneas celulares con diferentes potenciales metastásicos ofrece un instrumento valioso para identificar genes asociados al fenotipo metastásico.
Objetivos. Comparar los perfiles de expresión genética de dos líneas celulares de cáncer de próstata de rata con diferentes capacidades metastásicas para un mejor entendimiento del proceso metastásico.
Materiales y métodos. Se utilizaron micromatrices de Affymetrix para analizar la expresión génica de dos líneas celulares de próstata de rata con diferentes propiedades metastásicas, MAT-LyLu y G. Los datos fueron analizados en el contexto de vías y grupos funcionales. Se utilizó reacción en cadena de la polimerasa en tiempo real para validación de genes seleccionados.
Resultados. Además de la expresión diferencial de genes en un número de vías de señalización y metabólicas, se detectó sobre-expresión de 48 genes y expresión disminuida de 59 genes en la línea MAT-LyLu comparado con la línea G. Los genes fueron agrupados en categorías funcionales, tales como interacción epitelial-matriz extracelular, motilidad celular, proliferación celular, y transportadores, entre otros. Muchos de estos genes no han sido asociados previamente a la metástasis del cáncer de próstata.
Conclusiones. Se identificaron genes con expresión alterada asociados al fenotipo metastásico del cáncer de próstata. La subsiguiente validación de estos genes en tejido prostático humano pudiera revelar su utilidad como marcadores biológicos para esta enfermedad.

Descargas

La descarga de datos todavía no está disponible.

Referencias

1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106-30.
2. Dong JT, Rinker-Schaeffer CW, Ichikawa T, Barrett JC, Isaacs JT. Prostate cancer biology of metastasis and its clinical implications. World J Urol. 1996;14:182-9.
3. Dunning WF. Prostate cancer in the rat. Natl Cancer Inst Monogr. 1963;12:351-69.
4. Isaacs JT, Isaacs WB, Feitz WF, Scheres J. Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate. 1986;9:261-81.
5. Isaacs JT, Yu GW, Coffey DS. The characterization of a newly identified, highly metastatic variety of Dunning R 3327 rat prostatic adenocarcinoma system: the MAT LyLu tumor. Invest Urol. 1981;19:20-3.
6. Luo J, Sharma N, Seftor EA, De Larco J, Heidger PM, Hendrix MJ, et al. Heterogeneous expression of invasive and metastatic properties in a prostate tumor model. Pathol Oncol Res 1997;3:264-71.
7. Sharma N, Luo J, Kirschmann DA, O'Malley Y, Robbins ME, Akporiaye ET et al. A novel immunological model for the study of prostate cancer. Cancer Res. 1999;59:2271-6.
8. Li C, Wong WH. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2001;2:RESEARCH0032.
9. Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 2001;98:31-6.
10. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002;31:19-20.
11. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25-9.
12. Rajeevan MS, Ranamukhaarachchi DG, Vernon SD, Unger ER. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods. 2001;25:443-51.
13. Wenger AS, Mickey DD, Hall M, Silverman LM, Mickey GH, Fried FA. In vitro characterization of MAT LyLu: a Dunning rat prostate adenocarcinoma tumor subline. J Urol. 1984;131:1232-6.
14. Poste G, Fidler IJ. The pathogenesis of cancer metastasis. Nature. 1980;283:139-46.
15. LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 2002;62:4499-506.
16. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, et al. Delineation of prognostic biomarkers in prostate cancer. Nature. 2001;412:822-6.
17. Nelson PS, Clegg N, Eroglu B, Hawkins V, Bumgarner R, Smith T, et al. The prostate expression database (PEDB): status and enhancements in 2000. Nucleic Acids Res. 2000;28:212-3.
18. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, et al. Hedgehog signaling in prostate regeneration, neoplasia and metastasis. Nature. 2004;431:707-12.
19. Yang X, Chen MW, Terry S, Vacherot F, Bemis DL, Capodice J, et al. Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene. 2006;25:3436-44.
20. Hellawell GO, Brewster SF. Growth factors and their receptors in prostate cancer. BJU Int. 2002;89:230-40.
21. Ma PC, Maulik G, Christensen J, Salgia R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 2003;22:309-25.
22. Hurle RA, Davies G, Parr C, Mason MD, Jenkins SA, Kynaston HG et al. Hepatocyte growth factor/scatter factor and prostate cancer: a review. Histol Histopathol. 2005;20:1339-49.
23. Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev. 2002;13:41-59.
24. Kim SJ, Johnson M, Koterba K, Herynk MH, Uehara H, Gallick GE. Reduced c-Met expression by an adenovirus expressing a c-Met ribozyme inhibits tumorigenic growth and lymph node metastases of PC3-LN4 prostate tumor cells in an orthotopic nude mouse model. Clin Cancer Res. 2003;9:5161-70.
25. Parr C, Davies G, Nakamura T, Matsumoto K, Mason MD, Jiang WG. The HGF/SF-induced phosphorylation of paxillin, matrix adhesion, and invasion of prostate cancer cells were suppressed by NK4, an HGF/ SF variant. Biochem Biophys Res Commun. 2001;285:1330-7.
26. Beviglia L, Kramer RH. HGF induces FAK activation and integrin-mediated adhesion in MTLn3 breast carcinoma cells. Int J Cancer. 1999;83:640-9.
27. Spence HJ, Johnston I, Ewart K, Buchanan SJ, Fitzgerald U, Ozanne BW. Krp1, a novel kelch related protein that is involved in pseudopod elongation in transformed cells. Oncogene. 2000;19:1266-76.
28. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530-6.
29. Amatschek S, Koenig U, Auer H, Steinlein P, Pacher M, Gruenfelder A, et al. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res 2004;64:844-56.
30. Borczuk AC, Shah L, Pearson GD, Walter KL, Wang L, Austin JH, et al. Molecular signatures in biopsy specimens of lung cancer. Am J Respir Crit Care Med. 2004;170:167-74.
31. Burton-Wurster N, Liu W, Matthews GL, Lust G, Roughley PJ, Glant TT, et al. TGF beta 1 and biglycan, decorin, and fibromodulin metabolism in canine cartilage. Osteoarthr Cartil. 2003;11:167-76.
32. Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J. 1994;302:527-34.
33. Schostak M, Krause H, Miller K, Schrader M, Weikert S, Christoph F, et al. Quantitative real-time RT-PCR of CD24 mRNA in the detection of prostate cancer. BMC Urol. 2006;6:7.
34. Kristiansen G, Pilarsky C, Pervan J, Sturzebecher B, Stephan C, Jung K, et al. CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate. 2004;58:183-92.
35. Buchholz M, Biebl A, Neesse A, Wagner M, Iwamura T, Leder G, et al. SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res. 2003;63:4945-51.
36. Chen LM, Zhang X, Chai KX. Regulation of prostasin expression and function in the prostate. Prostate. 2004;59:1-12.
37. Tahir SA, Yang G, Ebara S, Timme TL, Satoh T, Li L, et al. Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res.2001;61:3882-5.
38. Thompson TC, Timme TL, Li L, Goltsov A. Caveolin-1, a metastasis-related gene that promotes cell survival in prostate cancer. Apoptosis 1999;4:233-7.
39. Inoue G, Horiike N, Onji M. The CD81 expression in liver in hepatocellular carcinoma. Int J Mol Med. 2001;7:67-71.
40. Bienstock RJ, Barrett JC. KAI1, a prostate metastasis suppressor: prediction of solvated structure and interactions with binding partners; integrins, cadherins, and cell-surface receptor proteins. Mol Carcinog. 2001;32:139-53.
Cómo citar
Reyes, I., Tiwari, R., Geliebter, J., & Reyes, N. (1). Análisis de micromatrices de ADN revela genes asociados a metástasis en líneas celulares de cáncer de próstata de rata. Biomédica, 27(2), 192-203. https://doi.org/10.7705/biomedica.v27i2.215
Sección
Artículos originales