Primer reporte de la mutación F1534C asociada con resistencia cruzada a DDT y piretroides en Aedes aegypti en Colombia

  • María Claudia Atencia Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
  • María de Jesús Pérez Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
  • María Cristina Jaramillo Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
  • Sandy Milena Caldera Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
  • Suljey Cochero Secretaría de Salud de Sucre, Sincelejo, Colombia
  • Eduar Elías Bejarano Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
Palabras clave: Aedes, mutación, resistencia a los insecticidas, genotipo, control de mosquitos, Colombia

Resumen

Introducción. La principal estrategia para el control de Aedes aegypti, vector de los virus del dengue, del chikungunya y del zika, se basa en la utilización de insecticidas con el fin de disminuir su población. Sin embargo, su uso ha implicado que el insecto desarrolle resistencia a estos agentes químicos. Objetivo. Determinar la presencia de la mutación F1534C asociada con resistencia cruzada al DDT y los piretroides en mosquitos de la especie A. aegypti en Sincelejo, Colombia. Materiales y métodos. El estudio se desarrolló con nueve ejemplares de A. aegypti que mostraron resistencia a lambdacialotrina en bioensayos desarrollados por la Secretaría de Salud de Sucre. Se utilizó una reacción en cadena de la polimerasa (PCR) semianidada siguiendo la metodología descrita por Harris, et al., para amplificar el exón 31 del gen para del canal de sodio dependiente de voltaje de A. aegypti. Los productos de la PCR se secuenciaron, editaron y analizaron con el programa MEGA 5. Resultados. En todos los mosquitos evaluados se detectó la presencia del alelo silvestre y mutante del exón 31. En la secuencia de nucleótidos del alelo mutante, se observó la sustitución de timina por guanina, la cual produce el cambio del codón UUC por UGC y conlleva el reemplazo del aminoácido fenilalanina por cisteína en el residuo 1534 de la proteína. Conclusión. Los nueve mosquitos analizados presentaron un genotipo heterocigoto para la mutación F1534C, cuyo efecto fenotípico es la resistencia al “derribo” (knock-down resistance, kdr) con DDT y piretroides.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Trujillo M, Marquetti M, Vásquez A, Montes J. Dinámica estacional y temporal de Aedes aegypti (Diptera: Culicidae) en el municipio Cienfuegos. Rev Cubana Med Trop. 2010;62:98-106.

World Health Organization. Guidelines for prevention and control of chikungunya fever. World Health Organization, Regional Office for South-East Asia, New Delhi: WHO; 2009. Fecha de consulta: 12 de septiembre de 2014. Disponible en: http://www.wpro.who.int/mvp/topics/ntd/Chikungunya_WHO_SEARO.pdf

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504-7. http://dx.doi.org/10.1038/nature12060

Instituto Nacional de Salud. Guía de atención clínica integral del paciente con dengue. Fecha de consulta: 20 de diciembre de 2014. Disponible en: http://www2.paho.org/col/dmdocuments/Guiadengue210310.pdf

Bisset JA, Rodríguez MM, San Martín JL, Romero JE, Montoya R. Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de El Salvador. Rev Panam Salud Pública. 2009;26:229-34. http://dx.doi.org/10.1590/S1020-49892009000900007

Morrison AC, Zielinski-Gutiérrez E, Scott TW, Rosenberg R. Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. PLoS Med. 2008;5:e68. http://dx.doi.org/10.1371/journal.pmed.0050068

Achee NL, Gould F, Perkins TA, Reiner RC, Morrison AC, Ritchie SA, et al. A critical assessment of vector control for dengue prevention. PLoS Negl Trop Dis. 2015;9:e0003655. http://dx.doi.org/10.1371/journal.pntd.0003655

van Den Berg H, Zaim M, Singh R, Soares A Ameneshewa B, Mnzava A, et al. Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspect. 2012;20:577-82. http://dx.doi.org/10.1289/ehp.1104340

Ranson H, Burhani J, Lumjuan N, Black WC. Insecticide resistance in dengue vectors. TropIKA.net. 2010;1:1-12.

Maestre R, Rey G, De Las Salas J, Vergara C, Santacoloma L, Goenaga S, et al. Estado de la susceptibilidad de Aedes aegypti a insecticidas en Atlántico (Colombia). Rev Colomb Entomol. 2010;36:242-8.

Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, et al. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol. 2014;50:1-17. http://dx.doi.org/10.1016/j.ibmb.2014.03.012

Brengues C, Hawkes NJ, Chandre F, Mccarroll L, Duchon S, Guillet P, et al. Pyrethroid and DDT cross-resistance in Aedes aegyptiis correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol. 2003;13:87-94. http://dx.doi.org/10.1046/j. 1365-2915.2003.00412.x

Fonseca I, Quiñones ML. Resistencia a insecticidas en mosquitos (Diptera: Culicidae): mecanismos, detección y vigilancia en salud pública. Rev Colomb Entomol. 2005;31:107-15.

Anaya YP. Evaluación de la susceptibilidad a insecticidas en Aedes aegypti capturados en el municipio de Sincelejo, departamento de Sucre, Colombia (tesis). Sincelejo: Universidad de Sucre; 2008.

Maestre R, Gómez D, Ponce G, Flores AE. Susceptibility to insecticides and resistance mechanisms in Aedes aegypti from the Colombian Caribbean Region. Pestic Biochem Physiol. 2014;116:63-73. http://dx.doi.org/10.1016/j.pestbp. 2014.09.014

Mazzari M. Revisión del estado actual de la resistencia en Aedes aegypti a insecticidas utilizados en salud pública. Bol Mal Salud Amb. 1995;35:90-5.

Ocampo CB, Salazar MJ, Mina NJ, Mcallister J, Brogdon W. Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Trop. 2011;118:37-44. http://dx. doi.org/10.1016/j.actatropica.2011.01.007

World Health Organization.Insecticide resistance and vector control: WHO; 1970. Fecha de consulta: 22 de agosto de 2014. Disponible en: http://apps.who.int/iris/bitstream/10665/40771/1/WHO_TRS_443_(part1).pdf

Caldera SM, Jaramillo MC, Cochero S, Pérez A, Bejarano EE. Diferencias genéticas entre poblaciones de Aedes aegypti de municipios del norte de Colombia, con baja y alta incidencia de dengue. Biomédica. 2013;33:89-98. http://dx. doi.org/10.7705/biomedica.v33i0.1573

Harris AF, Shavanthi R, Ranson H. Pyrethroid resistance in Aedes aegypti from Grand Cayman. Am J Trop Med Hyg. 2010;83:277-84. http://dx.doi.org/10.4269/ajtmh.2010. 09-0623

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28: 2731-9. http://dx.doi.org/10.1093/molbev/msr121

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Blast. Basic local alignment search tool. J Mol Biol. 1990;215:403-10. http://dx.doi.org/10.1016/S0022-2836(05)80360-2

Williamson MS, Martínez D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet. 1996;252:51-60.

Aponte HA, Penilla RP, Dzul-Manzanilla F, Che-Mendoza A, López AD, Solís F, et al. The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, México. Pest Biochem Physiol. 2013;107:226-34. http://dx.doi.org/10.1016/j.pestbp.2013.07.005

Birggitt JG, Brito PL, Azambuja G, Saori A, Vieira R, Pereira JB, et al. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit Vectors. 2014;7:25. http://dx.doi.org/10.1186/1756-3305-7-25

Kushwah RB, Dykes CL, Kapoor N, Adak T, Singh OP. Pyrethroid-resistance and presence of two knockdown resistance (kdr) mutations, F1534C and a novel mutation T1520I, in Indian Aedes aegypti. PLoS Negl Trop Dis. 2015;91:e3332. http://dx.doi.org/10.1371/journal.pntd. 0003332

Álvarez LC, Ponce G, Saavedra-Rodríguez K, López B, Flores AE. Frequency of V1016I and F1534C mutations in the voltage-gated sodium channel gene in Aedes aegypti in Venezuela. Pest Manag Sci. 2015;71:863-9. http://dx.doi.org/10.1002/ps.3846

Yanola J, Somboon P, Walton C, Nachaiwieng W, Prapanthadara L. A novel F1552/C1552 point mutation in the Aedes aegypti voltage-gated sodium channel gene associated with permethrin resistance. Pestic Biochem Physiol. 2010;96:127-31. http://dx.doi.org/10.1016/j.pestbp. 2009.10.005

Publicado
2016-09-01
Cómo citar
Atencia, M., Pérez, M., Jaramillo, M., Caldera, S., Cochero, S., & Bejarano, E. (2016). Primer reporte de la mutación F1534C asociada con resistencia cruzada a DDT y piretroides en Aedes aegypti en Colombia. Biomédica, 36(3), 432-437. https://doi.org/10.7705/biomedica.v36i3.2834
Sección
Comunicación breve