DOI: https://doi.org/10.7705/biomedica.v36i0.2950

Priorización de enfermedades virales zoonóticas en la interfaz de cerdos silvestres, cerdos domésticos y seres humanos

Diana Benavides-Arias, Diego Soler-Tovar

Resumen


Introducción. Para entender la ecología de las enfermedades es necesario comprender los agentes patógenos en la interfaz de vida silvestre y ganado. Los cerdos silvestres (Sus scrofa) constituyen un problema sanitario cuando se trata de prevenir y controlar las enfermedades zoonóticas, pues en ocasiones sus poblaciones son portadores de agentes infecciosos transmisibles a los cerdos domésticos y a otras especies animales, incluidos los seres humanos.
Objetivo. Priorizar las enfermedades zoonóticas en la interfaz de cerdos silvestres, animales domésticos y seres humanos.
Materiales y métodos. Se utilizó el método de priorización semicuantitativa basado en 27 criterios sustentados en publicaciones recientes, los cuales se clasificaron en las siguientes cinco categorías con base en la etiología viral: epidemiología (ocho), prevención y control (tres), economía y comercio (cuatro), salud pública (nueve) y sociedad (tres). A cada criterio se le adjudicó un coeficiente entre 0 y 7 de acuerdo con su impacto medido con base en la información científica (suma total de 189). La información sobre los criterios para las nueve enfermedades virales analizadas se recolectó mediante la revisión de 81 fuentes publicadas entre 1977 y 2015.
Resultados. Las tres enfermedades con mayor puntaje y potencial zoonótico fueron la influenza porcina (133), la hepatitis E (123) y la infección por hantavirus (103), y la mayor puntuación se observó en los criterios de epidemiología y salud pública.
Conclusión. Los métodos semicuantitativos de priorización son una fuente de información para la toma de decisiones, pero su utilización es poco frecuente en los países en desarrollo por la falta de datos de vigilancia en salud pública. El control de las enfermedades que afectan tanto a los seres humanos como a los animales silvestres, requiere el desarrollo de estrategias que reduzcan la transmisión de patógenos de estos a los animales domésticos y a los seres humanos.


Palabras clave


ecología; Sus scrofa; virus; zoonosis

Texto completo:

PDF HTML

Referencias


1. Barasona JA, Latham MC, Acevedo P, Armenteros JA, Latham AD, Gortázar C, et al. Spatiotemporal interactions between wild boar and cattle: Implications for cross-species disease transmission. Vet Res. 2014;45:1-122. http://dx.doi.org/10.1186/s13567-014-0122-7
2. Gortázar C, Díez-Delgado I, Barasona JA, Vicente J, De La Fuente J, Boadella M. The wild side of disease control at the wildlife-livestock-human interface: A review. Front Vet Sci. 2015;1:27. http://dx.doi.org/10.3389/fvets.2014.00027
3. Gortázar C, Ferroglio E, Höfle U, Frölich K, Vicente J. Diseases shared between wildlife and livestock: A European perspective. Eur J Wild Res. 2007;53:241-56. http://dx.doi.org/10.1007/s10344-007-0098-y
4. Monsalve S, Mattar S, González M. Zoonosis transmitidas por animales silvestres y su impacto en las enfermedades emergentes y reemergentes. Rev MVZ Córdoba. 2009;14: 1762-73.
5. Logan-Rist C, Arriola C, Rubin C. Prioritizing zoonoses: A proposed one health tool for collaborative decision-making. Centers for Disease Control and Prevention. PLoS ONE. 2014;9:e109986. http://dx.doi.org/10.1371/journal.pone. 0109986
6. Jones K, Patel N, Levy M, Storeygard A. Global trends in emerging infectious disease. Nature. 2008;451:990-3. http://dx.doi.org/10.1038/nature06536.
7. Jones B, McKeever D, Grace D, Pfeiffer D, Mutua F, Njuki J, et al. Zoonoses (Project 1). Wildlife/domestic livestock interactions. Nairobi: International Livestock Research Institute; 2011. p. 128.
8. Humblet MF, Vandeputte S, Albert A, Gosset C, Kirschvink N, Haubruge E, et al. Multidisciplinary and evidence-based method for prioritizing diseases of food-producing animals and zoonoses. Emerg Infect Dis. 2012;18. http://dx.doi.org/10.3201/eid1804.111151
9. Cito F, Rijks J, Rantsios A, Cunningham A, Baneth G, Guardabassik L, et al. Prioritization of companion animal transmissible diseases for policy intervention in Europe. J Comp Pathol. 2015. http://dx.doi.org/10.1016/j.jcpa.2015.01.007
10. Arbeláez G, Calderón D, Rincón M, Lora A, Mercado M. Improvement of two diagnostics methods for detection of influenza swine virus. Univ Sci. 2008;3:65-74.
11. Vittecoq M, Grandhomme V, Simon G, Herve S, Blanchon T, Renaud F, et al. Study of influenza A virus in wild boars living in a major duck wintering site. Infect Genet Evol. 2012;12:483-6. http://dx.doi.org/10.1016/j.meegid.2011. 12.003
12. Brown I. The epidemiology and evolution of influenza viruses in pigs. Vet Microbiol. 2000;74 29-46. http://dx.doi.org/10. 1016/S0378-1135(00)00164-4
13. Baratelli M, Córdoba L, Pérez L, Maldonado J, Frailea L, Núñez J, et al. Genetic characterization of influenza a viruses circulating in pigs and isolated in north-east Spain during the period 2006–2007. Res Vet Sci. 2014;96:380-8. http://dx.doi.org/10.1016/j.rvsc.2013.12.006
14. Hanssen H, Hincapié O, López J. Influenza en porcinos de Antioquia, Colombia. Bol Oficina Sanit Panam. 1977;82: 35-43.
15. Rajao D, Anderson T, Gauger P, Vincent A. Pathogenesis and vaccination of influenza A virus in swine. Curr Top Microbiol Immunol. 2014;1:307-26. http://dx.doi.org/10. 1007/82_2014_391
16. Lester P, Perera C, Coronado L, Ríos L, Vega A, Frías M, et al. Molecular epidemiology study of swine influenza virus revealing a reassorted virus H1N1 in swine farms in Cuba. Prev Vet Med. 2015;119:172-8. http://dx.doi.org/10.1016/j.prevetmed.2015.02.013
17. Alfonso P. Amenazas y oportunidades de reducción de riesgos por virus influenza en la interface animal-hombre. Rev Salud Anim. 2010;32:1-10.
18. Calore E, Uipc D, Pérez N. Pathology of the swine-origin influenza A (H1N1) flu. Pathol Res Pract. 2011;207:86-90. http://dx.doi.org/10.1016/j.prp.2010.11.003
19. Kumar S, Subhadra S, Singh B, Panda B. Hepatitis E virus: The current scenario. Int J Infect Dis. 2012;17:228-33. http://dx.doi.org/10.1016/j.ijid.2012.11.026
20. Di Bartolo I, Angeloni G, Ponterio E, Ostanello F, Ruggeri F. Detection of hepatitis E virus in pork liver sausages. Int J Food Microbiol. 2015;193:29-33. htt http://dx.doi.org/10.1016/j.ijfoodmicro.2014.10.005
21. Martelli F, Caprioli A, Zengarini M, Marata A, Fiegna C, Di Bartolo I, et al. Detection of hepatitis E virus (HEV) in a demographic managed wild boar (Sus scrofa scrofa) population in Italy. Vet Microbiol. 2008;26:74-81. http://dx.doi.org/10.1016/j.vetmic.2007.07.004
22. Nilsa D, Seminati C, Pina S, Mateu E, Martín M, Segalés J. Detection of hepatitis E virus in liver, mesenteric lymph node, serum, bile and faeces of naturally infected pigs affected by different pathological conditions. Vet Microbiol. 2007;119:105-14. http://dx.doi.org/10.1016/j.vetmic.2006. 08.027
23. Banks M, Bendall R, Grierson S, Heath G, Mitchell J, Dalton H. Human and porcine hepatitis E virus strains, United Kingdom. Emerg Infect Dis. 2004;10:953-5. http://dx.doi.org/10.3201/eid1005.030908
24. Gutiérrez-Vergara C, Quintero J, Duarte JF, Suescún JP, López-Herrera A. Detection of hepatitis E virus genome in pig livers in Antioquia, Colombia. Genet Mol Res. 2015;14:2890-1. http://dx.doi.org/10.4238/2015.March.31.20
25. Sanford B J, Opriessnig T, Kenney SP, Dryman BA, Córdoba L, Meng XJ. Assessment of the cross-protective capability of recombinant capsid proteins derived from pig, rat, and avian hepatitis E viruses (HEV) against challenge with a genotype 3 HEV in pigs. Vaccine. 2012;30:6249-55. http://dx.doi.org/10.1016/j.vaccine.2012.08.013
26. Song W, Xianfeng C, Xing D, Chen D, Mingjie X, Jiuhong L, et al. Rabbit and human hepatitis E virus strains belong to a single serotype. Virus Res. 2013;6:101-6. http://dx.doi.org/10.1016/j.virusres.2013.05.013
27. Montalvo M, Canwat-Owot J, Corrreia B, Bello M, Flaquet P, Sariego S, et al. Hepatitis E virus genotype 3 in humans and swine, Cuba. Infect Genet Evol. 2013;14:335-9. http://dx.doi.org/10.1016/j.meegid.2012.12.022
28. Oliveira-Filho EF, Bank-Wolf BR, Thiel HJ, König M. Phylogenetic analysis of hepatitis E virus in domestic swine and wild boar in Germany. Vet Microbiol. 2014;174:233-8. http://dx.doi.org/10.1016/j.vetmic.2014.09.011
29. Quintana-González A. Virus de la hepatitis E. Rev Biomed. 2003;14:165-89.
30. Ramos C. Los hantavirus causantes de la fiebre hemorrágica con síndrome renal y del síndrome pulmonar. Salud Pública Méx. 2008;50:334-40.
31. Harkness JE, Turner PV, Vandewoude S, Wheler CL. Harkness and Wagner’s Biology and Medicine of Rabbits and Rodents. Fifth edition. Hoboken, NJ: John Wiley & Sons; 2013.
32. Hart C, Bennett M. Hantavirus infections: Epidemiology and pathogenesis. Microbes Infect. 1999;1:1229-37. http://dx.doi.org/10.1016/S1286-4579(99)00238-5
33. Mitchell M, Tully TN Jr. Zoonotic diseases. En: Quesenberry K, Carpenter J, editors. Ferrets, Rabbits and Rodents. Third edition. St. Louis, MO: Elsevier; 2012. p. 557-65. http://dx.doi.org/10.1016/B978-1-4160-6621-7.18001-7
34. Cook R, Karesh W. Emerging diseases at the interface of people, domestic animals, and wildlife. En: Miller E, Fowler M, editors. Fowler’s zoo and wild animal medicine current therapy. First edition. St. Louis, MO: Elsevier Saunders; 2011. p. 136-46. http://dx.doi.org/10.1016/B978-1-4377-1986-4. 00018-4
35. Boklund A, Goldbach S, Uttenthal A, Alban L. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark. Prev Vet Med. 2008;85:187-206. http://dx.doi.org/10.1016/j.prevetmed.2008.01.012
36. Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever: A review of new knowledge. Vet J. 2003;165:11-20. http://dx.doi.org/10.1016/S1090-0233(02)00112-0
37. Ferrer E, Fonseca O, Percedo M, Abeledo M. Classical swine fever in the Americas and the Caribbean. Present situation and prospects for control and eradication. Rev Salud Anim. 2010;32:11-21.
38. Sawford K, Geong M, Bulu P, Drayton E, Mahardika G, Leslie E, et al. An investigation of classical swine fever virus seroprevalence and risk factors in pigs in East Nusa Tenggara, eastern Indonesia. Prev Vet Med. 2015;119:190-202. http://dx.doi.org/10.1016/j.prevetmed.2015.02.002
39. Instituto Colombiano Agropecuario. Colombia, Sanidad Animal, 2005. Fecha de consulta: 24 de mayo de 2015. Disponible en: http://www.ica.gov.co/getattachment/4b322f44- 1380-4481-84c9-cf5078cd14f8/1.aspx
40. Simon G, Le Dimna M, Le Potier MF, Pol F. Molecular tracing of classical swine fever viruses isolated from wild boars and pigs in France from 2002 to 2011. Vet Microbiol. 2013:166:631-8. http://dx.doi.org/10.1016/j.vetmic.2013. 06.032
41. Blome S, Grotha I, Moennig V, Greiser-Wilke I. Classical swine fever virus in South-Eastern Europe –Retrospective analysis of the disease situation and molecular epidemiology. Vet Microbiol. 2010;146:276-84. http://dx.doi.org/10.1016/j.vetmic.2010.05.035
42. Lévai R, Barna T, Fábián K, Blome S, Belák K, Bálint Á, et al. Pre-registration efficacy study of a novel marker vaccine against classical swine fever on Maternally Derived Antibody negative (MDA-) target animals. Biologicals. 2015;43:92-9. http://dx.doi.org/10.1016/j.biologicals.2014.12.004
43. Alarcón P, Rushton J, Wieland B. Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England –An economic disease model. Prev Vet Med. 2013;110:88-102. http://dx. doi.org/10.1016/j.prevetmed.2013.02.010
44. Darwich L, Mateu E. Immunology of porcine circovirus type 2 (PCV2). Virus Res. 2012;164:61-7. http://dx.doi.org/10.1016/j.virusres.2011.12.003
45. Pujols J, Lorca-Oró C, Díaz C, Russell L, Campbell J, Crenshaw D, et al. Commercial spray-dried porcine plasma does not transmit porcine circovirus type 2 in weaned pigs challenged with porcine reproductive and respiratory syndrome virus. Vet J. 2011:190:e16-20. http://dx.doi.org/10.1016/j.tvjl.2011.02.021
46. Knell S, Willems H, Hertrampf B, Reine G. Comparative genetic characterization of porcine circovirus type 2 samples from German wild boar populations. Vet Microbiol. 2005;109:169-77. http://dx.doi.org/10.1016/j.vetmic.2005. 06.004
47. Díaz I, Cortey M, Darwich L, Sibila M, Mateu E, Segalés J. Subclinical porcine circovirus type 2 infection does not modulate the immune response to an Aujeszky’s disease virus vaccine. Vet J. 2012;194:84-8. http://dx.doi.org/10.1016/j.tvjl.2012.02.014
48. Grau-Roma L, Fraile L, Segalés J. Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet J. 2011;187:23-32. http://dx.doi.org/10.1016/j.tvjl.2010.01.018
49. Vidigal P, Mafra CL, Silva FM, Fietto JL, Silva-Júnior A, Almeida MR. Tripping over emerging pathogens around the world: A phylogeographical approach for determining the epidemiology of porcine circovirus-2 (PCV-2), considering global trading. Virus Res. 2012;163:320-7. http://dx.doi.org/10.1016/j.virusres.2011.10.019
50. Rose N, Eveno N, Grasland B, Nignol A, Oger A, Jestin A, et al. Individual risk factors for Post-weaning Multisystemic Wasting Syndrome (PMWS) in pigs: A hierarchical Bayesian survival analysis. Prev Vet Med. 2009;90:168-79. http://dx. doi.org/10.1016/j.prevetmed.2009.04.010
51. Burbelo P, Ragheb JA, Kapoor A, Zhang Y. The serological evidence in humans supports a negligible risk of zoonotic infection from porcine circovirus type 2. Biologicals. 2013;41:430-4. http://dx.doi.org/10.1016/j.biologicals.2013.09.005
52. Hattermann K, Roedner C, Schmitt C, Finsterbusch T, Steinfeldt T, Mankertz A. Infection studies on human cell lines with porcine circovirus type 1 and porcine circovirus type 2. Xenotransplantation. 2004;11:284-94. http://dx.doi.org/10.1111/j.1399-3089.2004.00134.x
53. Roca M, Gimeno M, Bruguera S, Segalés J, Díaz I, Galindo-Cardiel IJ, et al. Effects of challenge with a virulent genotype II strain of porcine reproductive and respiratory syndrome virus on piglets vaccinated with an attenuated genotype I strain vaccine. Vet J. 2012;193:92-6. http://dx. doi.org/10.1016/j.tvjl.2011.11.019
54. Mengeling W, Lager K, Vorwald A. The effect of porcine parvovirus and porcine reproductive and respiratory syndrome virus on porcine reproductive performance. Anim Reprod Sci. 2000;60:199-210. http://dx.doi.org/10.1016/S0378-4320(00)00135-4
55. Borrallo G, Guillermo M, Sánchez J. Parvovirosis porcina. Mundo Ganadero. 1993;11:65-8.
56. Ruíz-Fonz F, Segalés J, Gortázar CH. A review of viral diseases of the European wild boar: Effects of population dynamics and reservoir role. Vet J. 2007;176:158-69. http://dx.doi.org/10.1016/j.tvjl.2007.02.017
57. Cadar D, Kiss T, Ádám D, Cságola A, Novosel D, Tuboly T. Phylogeny, spatio-temporal phylodynamics and evolutionary scenario of Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) in wild boars: Fast dispersal and high genetic diversity. Vet Microbiol. 2013;166:200-13. http://dx.doi.org/10.1016/j.vetmic.2013.06.010
58. Fenati M, Armaroli E, Corrain R, Guberti V. Indirect estimation of porcine parvovirus maternal immunity decay in free-living wild boar (Sus scrofa) piglets by capture–recapture data. Vet J. 2009;180:262-4. http://dx.doi.org/10.1016/j.tvjl.2007.12.009
59. Rico S, Molina S, Pabón F. Detección y aislamiento del parvovirus porcino en Medellín, Colombia. Rev Col Cienc Pec. 2003;16:40-4.
60. Antonis A, Bruschke C, Rueda P, Maranga L, Casal J, Vela C, et al. A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure. Vaccine. 2006;24:5481-90. http://dx. doi.org/10.1016/j.vaccine.2006.03.089
61. Carvalho H, Zúquete S, Wijnveld M, Weesendorp E, Jongejan F, Stegeman A, et al. No evidence of African swine fever virus replication in hard ticks. Ticks Tick Borne Dis. 2014;5:582-9. http://dx.doi.org/10.1016/j.ttbdis.2013.12.012
62. Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013;173:122-30. http://dx.doi.org/10.1016/j.virusres.2012.10.026
63. Blome S, Gabriel C, Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine. 2014;32:3879-82. http://dx.doi.org/10.1016/j.vaccine.2014.05.051
64. Sánchez-Vizcaíno JM, Mur L, Martínez-López B. African swine fever: An epidemiological update. Transbound Emerg Dis. 2012;59:27-35. http://dx.doi.org/10.1111/j.1865-1682.2011.01293.x
65. Gogin A, Gerasimov V, Malogolovkin A, Kolbasov D. African swine fever in the North Caucasus region and the Russian Federation in years 2007–2012. Virus Res. 2013;173:198-203. http://dx.doi.org/10.1016/j.virusres.2012. 12.007
66. Oura C, Edwards L, Batten C. Virological diagnosis of African swine fever—Comparative study of available tests. Virus Res. 2013;173:150-8. http://dx.doi.org/10.1016/j.virusres.2012.10.022
67. Gavier-Widén D, Gortázar C, Stahl K, Neimanis AS, Rossi S, Hard AF Segerstad C, et al. African swine fever in wild boar in Europe: A notable challenge. Vet Rec. 2015;176:199-200. http://dx.doi.org/10.1136/vr.h699
68. World Organisation for Animal Health (OIE). Peste porcina africana. Fecha de consulta: 28 de abril de 2015. Disponible en: http://www.oie.int/doc/ged/D13954.PDF
69. Ruiz-Fons F. A review of the current status of relevant zoonotic pathogens in wild swine (Sus scrofa) populations: Changes modulating the risk of transmission to humans. Transbound Emerg Dis. 2015. http://dx.doi.org/10.1111/tbed.12369
70. Schelkopf A, Nerem J, Cowles B, Amodie D, Swalla R, Dee R. Reproductive, productivity, and mortality outcomes in late-gestation gilts and their litters following simulation of inadvertent exposure to a modified-live vaccine strain of porcine reproductive and respiratory syndrome (PRRS) virus. Vaccine. 2014;32:4639-43. http://dx.doi.org/10.1016/j.vaccine.2014.06.073
71. Sutherland M, Niekamp S, Johnson R, van Alstine W, Salak-Johnson J. Heat and social rank impact behavior and physiology of PRRS-virus-infected pigs. Physiol Behav. 2006;90:73-81. http://dx.doi.org/10.1016/j.physbeh.2006.08.029
72. Cruz MC. Prevalencia serológica del síndrome reproductivo y respiratorio porcino (PRRS) en cerdos de explotaciones extensivas de Colombia. Rev Med Vet Zoot. 2006;53:33-41.
73. Food and Agriculture Organization, FAO. EMPRES Boletín de enfermedades transfronterizas de los animals. Fecha de consulta: 28 de abril de 2015. Disponible en: http://www.fao.org/docrep/011/i0574s/i0574s00.HTM
74. Verpoest S, Brigitte C, De Regge N. Molecular charac-terization of Belgian pseudorabies virus isolates from domestic swine and wild boar. Vet Microbiol. 2014;172:72-7. http://dx.doi.org/10.1016/j.vetmic.2014.05.001
75. Maresch C, Lange E, Teifke J, Fuchs W, Klupp B, Müller T, et al. Oral immunization of wild boar and domestic pigs with attenuated live vaccine protects against Pseudorabies virus infection. Vet Microbiol. 2012;161:20-5. http://dx.doi.org/10.1016/j.vetmic.2012.07.002
76. Del Rincón J. Enfermedad de Aujeszky: descripción y consideraciones. Mundo Ganadero. 1996;81:42-4.
77. Gerdts V, Jöns A, Mettenleiter T. Potency of an experimental DNA vaccine against Aujeszky’s disease in pigs. Vet Microbiol. 1999;66:1-13. http://dx.doi.org/10.1016/S0378-1135(98)00300-9
78. Albina E, Mesplède A, Chenut G, Le Potier M, Bourbao G, Le Gal S, et al. A serological survey on classical swine fever (CSF), Aujeszky’s disease (AD) and porcine reproductive and respiratory syndrome (PRRS) virus infections in French wild boars from 1991 to 1998. Vet Microbiol. 2000;77:43-57. http://dx.doi.org/10.1016/S0378-1135(00)00255-8
79. Rodríguez D, Naranjo J, Rincón M, Peña M. Estudio serológico de Aujeszky en las principales regiones por-cícolas del país. Porcicultura Colombiana. 2013;2:24-7.
80. Gillespie RR, Hill MA. Infection of pigs by aerosols of Aujeszky’s disease virus and their shedding of the virus. Res Vet Sci. 1996;60:228-33. http://dx.doi.org/10.1016/S0034-5288(96)90044-2
81. Müller T, Teuffert J, Zellmer R, Conraths FJ. Experimental infection of European wild boars and domestic pigs with pseudorabies viruses with differing virulence. Am J Vet Res. 2001;62:252-8. http://dx.doi.org/10.2460/ajvr.2001.62.252
82. Moreno A, Sozzi E, Grilli G, Gibelli L, Gelmetti D, de Lelli D, et al. Detection and molecular analysis of Pseudorabies virus strains isolated from dogs and a wild boar in Italy. Vet Microbiol. 2015;177:359-65. http://dx.doi.org/10.1016/j.vetmic.2015.04.001
83. Boklund A, Dahl J, Alban L. Assessment of confidence in freedom from Aujeszky’s disease and classical swine fever in Danish pigs based on serological sampling - Effect of reducing the number of samples. Prev Vet Med. 2012;110: 214-22. http://dx.doi.org/10.1016/j.prevetmed.2012.11.027
84. Boelaert F, Deluyker H, Maes D, Godfroid J, Raskin A, Varewijck H, et al. Prevalence of herds with young sows seropositive to pseudorabies (Aujeszky’s disease) in northern Belgium. Prev Vet Med. 1999;41:239-55. http://dx.doi.org/10.1016/S0167-5877(99)00058-6
85. Meng X, Lindsay D, Sriranganathan N. Wild boars as sources for infectious diseases in livestock and humans. Philos Trans R Soc Lond B Biol Sci. 2009;27:364;2697-707. http://dx.doi.org/10.1098/rstb.2009.0086
86. Kurowicka D, Bucura C, Cooke R, Havelaar A. Probabilistic inversion in priority setting of emerging zoonoses. Risk Anal. 2010;30:715-23. http://dx.doi.org/10.1111/j.1539-6924. 2010.01378
87. Havelaar AH, van Rosse F, Bucura C, Toetenel MA, Haagsma JA. Prioritizing emerging zoonoses in the Netherlands. PLoS ONE. 2010;5:e13965. http://dx.doi.org/10.1371/journal.pone.0013965
88. Cardoen S, van Huffel X, Berkvens D, Quoilin S, Ducoffre G, Saegerman C, et al. Evidence-based semiquantitative methodology for prioritization of foodborne zoonoses. Foodborne Pathog Dis. 2009;6:1083-96. http://dx.doi.org/10.1089/fpd.2009.0291
89. Jenicek M. Epidemiology, evidenced-based medicine, and evidence-based public health. J Epidemiol. 1997;7:187-97. http://dx.doi.org/10.2188/jea.7.187
90. López J. Sobre la salud pública basada en pruebas. Rev Esp Salud Pública. 2008;82:1-4.
91. Ciliberti A, Gavier-Widén D, Yon L, Hutchings M, Artois M. Prioritisation of wildlife pathogens to be targeted in European surveillance programmes: Expert-based risk analysis focus on ruminants. Prev Vet Med. 2015;118:271-84. http://dx.doi.org/10.1016/j.prevetmed.2014.11.021
92. Daszak P, Cunningham A, Hyatt A. Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science. 2000;287:443-9. http://dx.doi.org/10.1126/science.287.5452.443
93. Ruiz-Fons F, Vicente J, Vidal D, Höfle U, Villanúa D, Gauss C, et al. Seroprevalence of six reproductive pathogens in European wild boar (Sus scrofa) from Spain: The effect on wild boar female reproductive performance. Theriogenology. 2008;65:731-43. http://dx.doi.org/10.1016/j.theriogenology.2005.07.001
94. Corner L. The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: How to assess the risk. Vet Microbiol. 2006;112:303-12. http://dx.doi.org/10.1016/j.vetmic.2005.11.015
95. Dobson A. Population dynamics of pathogens with multiple host species. Am Nat. 2004;164:64-78. http://dx.doi.org/10. 1086/424681
96. Acevedo P, Vicente J, Hofle U, Cassinello J, Ruiz-Fons F, Gortázar C. Estimation of European wild boar relative abundance and aggregation: A novel method in epidemiological risk assessment. Epidemiol Infect. 2007;135:519-27. http://dx.doi.org/10.1017/S095026880 6007059
97. Mussa T, Ballester M, Silva-Campa S, Baratelli M, Busquets N, Lecours M, et al. Swine, human or avian influenza viruses differentially activates porcine dendritic cells cytokine profile. Vet Immunol Pathol. 2013;154:25-35. http://dx.doi.org/10.1016/j.vetimm.2013.04.004
98. Instituto Nacional de Salud. Enfermedades transmisibles. Fecha de consulta: 18 de junio de 2015. Disponible en: http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/Paginas/transmisibles.aspx#.VmG27HYvfIU
99. Abravanel F, Lhomme S, Dubois M, Peron J, Alric L, Kamar N, et al. General review hepatitis E virus. Médecine et Maladies Infectieuses. 2013;43:263-70. http://dx.doi.org/10.1016/j.medmal.2013.03.005
100. Wordl Health Organization. Future trends in veterinary public health. Geneva: WHO; 2002.
101. Cripps. P. Veterinary education, zoonoses and public health: A personal perspective. Acta Trop. 2000;76:77-80. http://dx.doi.org/10.1016/S0001-706X(00)00094-2
102. Cediel N, Villamil L, Romero J, Rentería L, Meneghi D. Setting priorities for surveillance, prevention, and control of zoonoses in Bogotá, Colombia. Rev Panam Salud Pública. 2013;33:316-24. http://dx.doi.org/10.1590/S1020-49892013000500002
103. Miguel E, Boulinierb T, Garine-Wichatitsky M, Carona A, Fritz H, Grosbois V. Characterizing African tick communities at a wild–domestic interface using repeated sampling protocols and models. Acta Trop. 2014;138:5-14. http://dx.doi.org/10.1016/j.actatropica.2014.05.019
104. Mackenzie J, Jeggo M, Daszak P, Richt J. One health: The human-animal-environment interfaces in emerging infectious diseases. The concept and examples of a one health approach. Berlin: Springer-Verlag Berlin Heidelberg; 2013. p. 365:X-362. http://dx.doi.org/10.1007/978-3-642-36889-9
105. Makita K, Fèvre E, Waiswa C, Kaboyo W, Eisler M, Welburn S. Evidence-based identification of the most important livestock related zoonotic diseases in Kampala, Uganda. J Vet Med Sci. 2011;73:991-1000. http://dx.doi.org/1010.1292/jvms.11-0049
106. NG V, Sargeant JM. A quantitative approach to the prioritization of zoonotic diseases in North America: A health professionals’ perspective. PloS One. 2013;8: e72172. http://dx.doi.org/10.1371/journal.pone.0072172
107. Instituto Colombiano Agropecuario. Programa de erradicación de peste porcina clásica. Fecha de consulta: 17 de junio de 2015. Disponible en: http://www.ica.gov.co/getdoc/ea9c6aa0-a5fc-472f-869b


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Revista Biomédica -  https://doi.org/10.7705/issn.0120-4157
ISSN 0120-4157

Instituto Nacional de Salud
INSTITUTO NACIONAL DE SALUD
Avenida Calle 26 No. 51-20
Apartado aéreo 80334 y 80080
Bogotá, D.C., Colombia, S.A.
Teléfono: 05712207700 Ext. 1386
Correo electrónico: biomedica@ins.gov.co