Premios nobel en Fisiología o Medicina y Química, año 2006. Una nueva dimensión del ARN en la regulación de la expresión genética y como herramienta experimental y terapéutica

Luis Alberto Gómez, .

Resumen

El 2 de octubre de 2006 se anunció el nombre de los investigadores laureados con el premio nobel en Fisiología o Medicina en este año. Los galardonados fueron los investigadores estadounidenses Andrew Z. Fire, profesor de la Escuela de Medicina de la Universidad de Stanford (fotografía 1 y derecha, fotografía 2) y Craig C. Mello (fotografía 3), profesor de la Escuela de Medicina de la Universidad de Massachussets. Se les otorgó el premio por sus investigaciones en la interferencia de la expresión de genes mediada por moléculas de ARN de doble cadena, un proceso fisiológico celular endógeno de regulación genética que está altamente conservado en los organismos multicelulares. Este proceso es llamado interferencia de ARN (ARNi) y, también, se conoce en plantas como el silencio genético después de la transcripción o abatimiento de la expresión de un gen después de que ha sido transcrito "post-transcriptional gene silencing"

Descargas

Los datos de descargas todavía no están disponibles.
  • Luis Alberto Gómez Grupo de Fisiología Molecular, Instituto Nacional de Salud

Referencias bibliográficas

1. Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, Thompson NE, et al. Architecture of RNA Polymerase II and implications for the transcription mechanism. Science 2000;288:640-9.
2. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. Structural basis of transcription: An RNA Polymerase II elongation complex at 3.3 A resolution. Science 2001;292:1876-82.
3. Westover KD, Bushnell DA, Kornberg RD. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 2004;303:1014-6.
4. Spiegelman BM, Heinrich R. Biological control through regulated transcriptional coactivators. Cell 2004;119:157-67.
5. Annunziato AT, Hansen JC. Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr 2000;9:37-61.
6. Maniatis T, Reed R. An extensive network of coupling among gene expression machines. Nature 2002;416:499-506.
7. Izant J, Weintraub H. Inhibition of Thymidine Kinase Gene expression by antisense RNA: A molecular approach to genetic analysis. Cell 1984;36:1007-15.8. Harland R, Weintraub H. Translation of mRNA Injected into Xenopus oocytes is specifically inhibited by antisense RNA. J Cell Biol 1985;10:1094-9.
9. Rosenberg U, Preiss A, Seifert E, Jackle H, Knipple DC. Production of phenocopies by Kruppel antisense RNA injection into Drosophila embryos. Nature 1985;313:703-6.
10. Guo S, Kemphues K. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995;81:611-20.
11. van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990;2:291-9.
12. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric Chalcone Synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990;2:279-89.
13. Ingelbrecht I, Van Houdt H, Van Montagu M, Depicker A. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci U S A. 1994;91:10502-6.
14. Baulcombe DC. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol Biol 1996;32:79-88.
15. Metzlaff M, O'Dell M, Cluster PD, Flavell RB. RNAmediated RNA degradation and chalcone synthase A silencing in petunia. Cell 1997;88:845-54.
16. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.
17. Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1998;95:15502-7.
18. Tabara H, Grishok A, Mello CC. RNAi in C. elegans: soaking in the genome sequence. Science 1998;282:430-1.
19. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small doublestranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 2001;98:9742-7.
20. Mello CC, Conte DJr. Revealing the world of RNA interference. Nature 2004;431:338-42.
21. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21 and 22 nucleotide RNAs. Genes Dev 2001;15:188-200.
22. Lee RC, Ambros V. An extensive class of smallRNAs in Caenorhabditis elegans. Science 2001;294:862-64.
23. Hannon, GJ. RNA interference. Nature 2002;418:244-251
24. Zeng Y, Yi R, Cullen BR. MicroRNAs and and small interfering RNAs can inhibit mRNA expression by similar mechanisms, Proc Natl Acad Sci U S A 2003;100,9779-84.
25. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs Genes Dev 2006;20:515-24
26. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409:363-6.
27. Vanitharani R, Chellappan P, Fauquet CM. Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc Natl Acad Sci U S A. 2003;100:9632-6.
28. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, et al. Characterization of the piRNA complex from rat testes. Science 2006;313:363-7.
29. Storz G, Altuvia S, Wassarman KM. An abundance of RNA regulators. Annu Rev Biochem. 2005;74:199-217.
30. Buratowski S, Moazed D. Gene regulation: expression and silencing coupled. Nature 2005;435:1174-5.
31. Buhler M, Verdel A, Moazed D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatindependent gene silencing. Cell 2006;125:873-86.
32. Soutchek J, Akink A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenoose gene by systemic administration of modified siRNAs. Nature 2004;432:173-8
33. Inoue A, Sawata SY, Taira K. Molecular design and delivery of siRNA. J Drug Target 2006;14:448-55.
34. Pushparaj PN, Melendez AJ. Short interfering RNA (siRNA) as a novel therapeutic. Clin Exp Pharmacol Physiol. 2006;33:504-10.
35. Novina C, Sharp P. The iRNA revolution. Nature 430:161-4.
36. Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A 2003;100:2718-23.
37. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol 2002;20:500-5.
38. Ying C, De Clercq E, Neyts J. Selective inhibition of hepatitis B virus replication by RNA interference. Biochem Biophys Res Comun 2003;309:482-4
39. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Notch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sc. U S A 2002;99:15524-29.

Cómo citar
1.
Gómez LA. Premios nobel en Fisiología o Medicina y Química, año 2006. Una nueva dimensión del ARN en la regulación de la expresión genética y como herramienta experimental y terapéutica. biomedica [Internet]. 1 de diciembre de 2006 [citado 28 de marzo de 2024];26(4):475-84. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/313
Publicado
2006-12-01
Sección
Comentario

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
Crossref Cited-by logo
QR Code