DOI: https://doi.org/10.7705/biomedica.v37i3.3223

Caracterización molecular de los serotipos no vacunales 11A, 15 B/C y 23A de Streptococcus pneumoniae recuperados de aislamientos invasivos en Colombia

Paola Andrea Palacios, Carolina Duarte, Olga Sanabria, Jaime Moreno

Resumen


Introducción. En Colombia se recolectaron 192 aislamientos invasivos de Streptococcus pneumoniae de los serotipos 11A, 15B/C y 23A (no incluidos en las vacunas conjugadas) entre 1994 y 2014, como parte de las actividades del Sistema de Redes de Vigilancia de los Agentes Responsables de Neumonías y Meningitis Bacterianas (SIREVA II).
Objetivo. Determinar las características moleculares de aislamientos invasivos de los serotipos 11A, 15B/C y 23A de S. pneumoniae recolectados en Colombia entre 1994 y 2014.
Materiales y métodos. La caracterización molecular de los aislamientos se hizo mediante electroforesis en gel de campo pulsado (Pulse-Field Gel Electrophoresis, PFGE) y por tipificación de secuencias multilocus (Multilocus Sequence Typing, MLST).
Resultados. El serotipo 11A mostró un grupo clonal representado por el ST62, en tanto que el serotipo 15B/C se distribuyó en tres grupos asociados con los clones Netherlands15B-37 ST199 (28,75 %), ST8495 (18,75 %) y SLV (variante en un solo locus) de ST193 (21,25 %). Los aislamientos con serotipo 23A se agruparon en tres grupos clonales; 70,21 % de ellos estaban estrechamente relacionados con el ST42, 17,02 % con el Colombia23F-ST338, y 6,38 % con el Netherlands15B-37 ST199.
Conclusión. Los clones Colombia23F-ST338 y Netherlands15B-ST199 encontrados en este estudio abarcaron más serotipos de los reportados previamente por otros autores, incluido el serotipo 23A. Estos análisis revelan la importancia de la conmutación (switching) capsular en la expansión de clones exitosos entre los serotipos no vacunales como causa de enfermedad invasiva neumocócica.


Palabras clave


Vaccines, conjugate; pneumonia; meningitis; pneumococcal infections; multilocus sequence typing; electrophoresis, gel, pulsed-field

Texto completo:

PDF (English) HTML (English)

Referencias


1. Rosen JB, Thomas AR, Lexau CA, Reingold A, Hadler JL, Harrison LH, et al. Geographic variation in invasive pneumococcal disease following pneumococcal conjugate vaccine introduction in the United States. Clin Infect Dis. 2011;53:137-43. https://doi.org/10.1093/cid/cir326
2. Hausdorff WP, Bryant J, Paradiso PR, Siber GR. Which pneumococcal serogroups cause the most invasive disease: Implications for conjugate vaccine formulation and use, part 1. Clin Infect Dis. 2000;30:100-21. https://doi.org/10.1086/313608
3. Park IH, Geno KA, Yu J, Oliver MB, Kim K-H, Nahm MH. Genetic, biochemical, and serological characterization of a new pneumococcal serotype, 6H, and generation of a pneumococcal strain producing three different capsular repeat units. Clin Vaccine Immunol. 2015;22:313-8. https://doi.org/10.1128/CVI. 00647-14
4. Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype and clone specific differences in invasive disease potential. J Infect Dis. 2003;187:1424-32. https://doi.org/10.1086/374624
5. Parra EL, Ramos V, Sanabria O, Moreno J. Serotype and genotype distribution among invasive Streptococcus pneumoniae isolates in Colombia, 2005-2010. PLoS One. 2014;9:e84993. https://doi.org/10.1371/journal.pone.0084993
6. Muñoz-Almagro C, Jordan I, Gene A, Latorre C, García-García JJ, Pallares R. Emergence of invasive pneumococcal disease caused by nonvaccine serotypes in the era of 7-valent conjugate vaccine. Clin Infect Dis. 2008;46:174-82. https://doi.org/10.1086/524660
7. Muller-Graf CD, Whatmore AM, King SJ, Trzcinski K, Pickerill AP, Doherty N, et al. Population biology of Streptococcus pneumoniae isolated from oropharyngeal carriage and invasive disease. Microbiology. 1999;145:3283-93. https://doi.org/10.1099/00221287-145-11-3283
8. Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. A discussion of the evidence. Lancet. 2011;378:1962-73. https://doi.org/10.1016/S0140-6736(10)62225-8
9. Hanage WP. Serotype replacement in invasive pneumococcal disease: Where do we go from here? J Infect Dis. 2007;196:1282-4. https://doi.org/10.1086/521630
10. Beall BW, Gertz RE, Hulkower RL, Whitney CG, Moore MR, Brueggemann AB. Shifting genetic structure of invasive serotype 19A pneumococci in the United States. J Infect Dis. 2011;203:1360-8. https://doi.org/10.1093/infdis/jir052
11. Wyres KL, Lambertsen LM, Croucher NJ, McGee L, von Gottberg A, Liñares J, et al. Pneumococcal capsular switching: A historical perspective. J Infect Dis. 2012;207:439-49. https://doi.org/10.1093/infdis/jis703
12. Esposito S, Principi N. Impacts of the 13-valent pneumococcal conjugate vaccine in children. J Immunol Res. 2015;2015:591580. https://doi.org/10.1155/2015/591580
13. Ardanuy C, Marimón JM, Calatayud L, Giménez M, Alonso M, Grau I, et al. Epidemiology of invasive pneumococcal disease in older people in Spain (2007-2009): Implications for future vaccination strategies. PLoS One. 2012;7:e43619. https://doi.org/10.1371/journal.pone.0043619
14. Kaplan SL, Barson WJ, Lin PL, Romero JR, Bradley JS, Tan TQ, et al. Early trends for invasive pneumococcal infections in children after the introduction of the 13-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J. 2013;32:203-7. https://doi.org/10.1097/INF.0b013e318275614b
15. Galanis I, Lindstrand A, Darenberg J, Browall S, Nannapaneni P, Sjöström K, et al. Effects of PCV7 and PCV13 on invasive pneumococcal disease and carriage in Stockholm, Sweden. Eur Respir J. 2016;47:1208-18. https://doi.org/10.1183/13993003.01451-2015
16. Moore CE, Paul J, Foster D, Mahar SA, Griffiths D, Knox K, et al. Reduction of invasive pneumococcal disease 3 years after the introduction of the 13-valent conjugate vaccine in the Oxfordshire Region of England. J Infect Dis. 2014;210:1001-11. https://doi.org/10.1093/infdis/jiu213
17. Thomas JC, Figueira M, Fennie KP, Laufer AS, Kong Y, Pichichero ME, et al. Streptococcus pneumoniae clonal complex 199: Genetic diversity and tissue-specific virulence. PLoS One. 2011;6:e18649. https://doi.org/10.1371/journal.pone.0018649
18. Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Riahi F, Doern GV. Changes in pneumococcal serotypes and antimicrobial resistance after introduction of the 13-valent conjugate vaccine in the United States. Antimicrob Agents Chemother. 2014;58:6484-9. https://doi.org/10.1128/AAC.03344-14
19. Mendes RE, Costello AJ, Jacobs MR, Biek D, Critchley IA, Jones RN. Serotype distribution and antimicrobial susceptibility of USA Streptococcus pneumoniae isolates collected prior to and post introduction of 13-valent pneumococcal conjugate vaccine. Diagn Microbiol Infect Dis. 2014;80:19-25. https://doi.org/10.1016/j.diagmicrobio.2014.05.020
20. Guevara M, Ezpeleta C, Gil-Setas A, Torroba L, Beristain X, Aguinaga A, et al. Reduced incidence of invasive pneumococcal disease after introduction of the 13-valent conjugate vaccine in Navarre, Spain, 2001-2013. Vaccine. 2014;32:2553-62. https://doi.org/10.1016/j.vaccine.2014.03.054
21. Harboe ZB, Dalby T, Weinberger DM, Benfield T, Mølbak K, Slotved HC, et al. Impact of 13-valent pneumococcal conjugate vaccination in invasive pneumococcal disease incidence and mortality. Clin Infect Dis. 2014;59:1066-73.https://doi.org/10.1093/cid/ciu524
22. Ben-Shimol S, Greenberg D, Givon-Lavi N, Schlesinger Y, Somekh E, Aviner S, et al. Early impact of sequential introduction of 7-valent and 13-valent pneumococcal conjugate vaccine on IPD in Israeli children<5 years: An active prospective nationwide surveillance. Vaccine. 2014;32:3452-9. https://doi.org/10.1016/j.vaccine. 2014.03.065
23. Di Fabio JL, Castañeda E, Agudelo CI, De la Hoz F, Hortal M, Camou T, et al. Evolution of Streptococcus pneumoniae serotypes and penicillin susceptibility in Latin America, Sireva-Vigía Group, 1993-1999. PAHO Sireva-Vigía Study Group. Pan American Health Organization. Pediatr Infect Dis J. 2001;20:959-67.
24. Clinical Laboratory Standards Institute. Disk diffusion. Supplemental tables. In: CLSI. M07–A9. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Ninth edition. Wayne, PA: CLSI; 2014.
25. Clinical Laboratory Standards Institute. MIC testing. Supplemental tables. In: CLSI. M02–A11. Performance standards for antimicrobial disk susceptibility tests. Eleventh edition. Wayne, PA: CLSI; 2014.
26. Vela MC, Fonseca N, Di Fabio JL, Castañeda E. Presence of international multiresistant clones of Streptococcus pneumoniae in Colombia. Microb Drug Resist. 2001;7:153-64. https://doi.org/10.1089/10766290152045020
27. Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: Identification of clones associated with serious invasive disease. Microbiology. 1998;144:3049-60. https://doi.org/10.1099/00221287-144-11-3049
28. Fletcher M, Laufer D, McIntosh E, Cimino C, Malinoski F. Controlling invasive pneumococcal disease: Is vaccination of at-risk groups sufficient? Int J Clin Pract. 2006;60:450-6. https://doi.org/10.1111/j.1368-5031.2006.00858.x
29. Grabenstein JD, Musey LK. Differences in serious clinical outcomes of infection caused by specific pneumococcal serotypes among adults. Vaccine. 2014;32:2399-405.
https://doi.org/10.1016/j.vaccine.2014.02.096
30. Camilli R, Bonnal RJ, Del Grosso M, Iacono M, Corti G, Rizzi E, et al. Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniae invasive isolate. BMC Microbiol. 2011;11:25. https://doi.org/10.1186/1471-2180-11-25
31. Aguinagalde L, Corsini B, Domenech A, Domenech M, Cámara J, Ardanuy C, et al. Emergence of amoxicillinresistant variants of Spain9V-ST156 pneumococci expressing serotype 11A correlates with their ability to evade the host immune response. PLoS One. 2015;10:e0137565. https://doi.org/10.1371/journal.pone.0137565
32. Tóthpál A, Kardos S, Laub K, Nagy K, Tirczka T, van der Linden M, et al. Radical serotype rearrangement of carried pneumococci in the first 3 years after intensive vaccination started in Hungary. Eur J Pediatr. 2015;174:373-81. https://doi.org/10.1007/s00431-014-2408-1
33. Parra EL, De La Hoz F, Díaz PL, Sanabria O, Realpe ME, Moreno J. Changes in Streptococcus pneumoniae serotype distribution in invasive disease and nasopharyngeal carriage after the heptavalent pneumococcal conjugate vaccine introduction in Bogotá, Colombia. Vaccine. 2013;31:4033-8. https://doi.org/10.1016/j.vaccine.2013.04.074
34. Harboe ZB, Thomsen RW, Riis A, Valentiner-Branth P, Christensen JJ, Lambertsen L, et al. Pneumococcal serotypes and mortality following invasive pneumococcal disease: A population-based cohort study. PLoS Med. 2009;6:e1000081. https://doi.org/10.1371/journal.pmed.1000081
35. Temime L, Boelle PY, Opatowski L, Guillemot D. Impact of capsular switch on invasive pneumococcal disease incidence in a vaccinated population. PLoS One. 2008;3:e3244. https://doi.org/10.1371/journal.pone.0003244
36. Laufer AS, Thomas JC, Figueira M, Gent JF, Pelton SI, Pettigrew MM. Capacity of serotype 19A and 15B/C Streptococcus pneumoniae isolates for experimental otitis media: Implications for the conjugate vaccine. Vaccine. 2010;28:2450-7. https://doi.org/10.1016/j.vaccine.2009.12.078
37. Ho PL, Chiu SS, Law PY, Chan EL, Lai EL, Chow KH. Increase in the nasopharyngeal carriage of non-vaccine serogroup 15 Streptococcus pneumoniae after introduction of children pneumococcal conjugate vaccination in Hong Kong. Diagn Microbiol Infect Dis. 2015;81:145-8. https://doi.org/0.1016/j.diagmicrobio.2014.11.006
38. Dagan R, Givon-Lavi N, Leibovitz E, Greenberg D, Porat N. Introduction and proliferation of multidrug-resistant Streptococcus pneumoniae serotype 19A clones that cause acute otitis media in an unvaccinated population. J Infect Dis. 2009;199:776-85. https://doi.org/10.1086/597044
39. Gherardi G, Fallico L, Del Grosso M, Bonanni F, D’Ambrosio F, Manganelli R, et al. Antibiotic-resistant invasive pneumococcal clones in Italy. J Clin Microbiol. 2007;45:306-12. https://doi.org/10.1128/JCM.01229-06
40. Rantala M. Antimicrobial resistance in Streptococcus pneumoniae in Finland with special reference to macrolides and telithromycin. Date of entry: 30 de octubre, 2015. Available at: https://helda.helsinki.fi/bitstream/handle/10138/18982/antimicr.pdf;sequence=2
41. Tochevaa AS, Jefferiesa JMC, Christodoulidesa M, Fausta SN, Clarkea SC. Distribution of carried pneumococcal clones in UK children following the introduction of the 7-valent pneumococcal conjugate vaccine: A 3-year cross-sectional population based analysis. Vaccine. 2013;31:3187-90. https://doi.org/10.1016/j.vaccine.2013.04.075
42. Ramos V, Duarte C, Díaz A, Moreno J. Elementos genéticos móviles asociados con resistencia a eritromicina en aislamientos de Streptococcus pneumoniae en Colombia. Biomédica. 2014;34:209-16. https://doi.org/10.7705/biomedica.v34i0.1684
43. Sá-Leão R, Tomasz A, Sanches IS, Brito-Avô A, Vilhelmsson SE, Kristinsson KG, et al. Carriage of internationally spread clones of Streptococcus pneumoniae with unusual drug resistance patterns in children attending day care centers in Lisbon, Portugal. J Infect Dis. 2000;182:1153-60. https://doi.org/10.1086/315813
44. Gertz RE, McEllistrem DJ, Boxrud Z, Li V, Sakota TA, Thompson RR, et al. Clonal distribution of invasive pneumococcal isolates from children and selected adults in the United States prior to 7-valent conjugate vaccine introduction. J Clin Microbiol. 2003;41 4194-216. https://doi.org/10.1128/JCM.41.9.4194-4216.2003


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Revista Biomédica -  https://doi.org/10.7705/issn.0120-4157
ISSN 0120-4157

Instituto Nacional de Salud
INSTITUTO NACIONAL DE SALUD
Avenida Calle 26 No. 51-20
Apartado aéreo 80334 y 80080
Bogotá, D.C., Colombia, S.A.
Teléfono: 05712207700 Ext. 1386
Correo electrónico: biomedica@ins.gov.co