Variantes en los genes TNFA, IL6 e IFNG asociadas con la gravedad del dengue en una muestra de población colombiana

  • Efren Avendaño-Tamayo Grupo de Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia Departamento de Ciencias Básicas, Tecnológico de Antioquia - Institución Universitaria, Medellín, Colombia
  • Omer Campo Grupo de Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
  • Juan Camilo Chacón-Duque Grupo de Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
  • Ruth Ramírez Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
  • Winston Rojas Grupo de Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
  • Piedad Agudelo-Flórez Facultad de Medicina, Universidad CES, Medellín, Colombia
  • Gabriel Bedoya Grupo de Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
  • Berta Nelly Restrepo Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
Palabras clave: dengue/genética, citocina, genotipo, reacción en cadena de la polimerasa, polimorfismo (genética), Colombia

Resumen

Introducción. La composición genética del huésped determina, entre otros aspectos, el perfil clínico del dengue, lo cual se debería al efecto de variantes en los genes que codifican citocinas proinflamatorias.
Objetivo. Evaluar la asociación entre las variantes de tres polimorfismos en los genes candidatos TNFA, IL6 e IFNG con la gravedad del dengue en una población colombiana.
Materiales y métodos. Se evaluaron los polimorfismos rs1800750, rs2069843 y rs2069705 de los genes TNFA, IL6 e IFNG, respectivamente, en 226 pacientes con dengue. Los genotipos se tipificaron usando la reacción en cadena de la polimerasa (PCR) y los polimorfismos de la longitud de los fragmentos de restricción (Restriction Fragment Length Polymorphism, RFLP). Para determinar el riesgo de diferentes fenotipos del dengue, se compararon las frecuencias alélicas con la prueba de ji al cuadrado, y los genotipos y los haplotipos, con regresión logística. Por último, los análisis se ajustaron utilizando datos de autoidentificación o del componente genético ancestral.
Resultados. El alelo A del rs2069843, ajustado por autoidentificación, se asoció con casos de dengue hemorrágico en afrocolombianos. En la muestra completa, dicho polimorfismo, ajustado por componente genético ancestral, fue reproducible. Además, hubo asociaciones significativas entre las combinaciones alélicas GGT y GAC de los rs1800750, rs2069843 y rs2069705 en pacientes con dengue hemorrágico, con ajuste por componente genético ancestral y sin él. Además, la combinación alélica AGC produjo 58,03 pg/ml más de interleucina 6 que la GGC, independientemente de los componentes genéticos europeo, amerindio y africano.
Conclusión. Las variantes de los polimorfismos GGT y GAC de los rs1800750, rs2069843 y rs2069705 en los genes TNFA, IL6 e IFNG, respectivamente, se correlacionaron con la gravedad del dengue en esta muestra de población colombiana.

Descargas

La descarga de datos todavía no está disponible.

Referencias

World Health Organization. Dengue guidelines for diag-nosis, treatment, prevention and control. Geneva: WHO; 2009. p. 3-17.

Mangold KA, Reynolds SL. A review of dengue fever: A resurging tropical disease. Pediatr Emerg Care. 2013;29: 665-9. https://doi.org/10.1097/PEC.0b013e31828ed30e

Peña-García VH, Triana-Chávez O, Mejía-Jaramillo AM, Díaz FJ, Gómez-Palacio A, Arboleda-Sánchez S. Infection rates by dengue virus in mosquitoes and the influence of temperature may be related to different endemicity patterns in three Colombian cities. Int J Environ Res Public Health. 2016;13:734. https://doi.org/10.3390/ijerph13070734

Normile D. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science. 2013; 342:415. https://doi.org/10.1126/science.342.6157.415

Rothman AL, Currier JR, Friberg HL, Mathew A. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts. Vaccine. 2014;33:7083-90. https://doi.org/10.1016/j.vaccine.2015.09.104

Balmaseda A, Hammond SN, Pérez L, Téllez Y, Saborio SI, Mercado JC, et al. Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg. 2006;74:449-56.

Murgue B, Roche C, Chungue E, Deparis X. Prospective study of the duration and magnitude of viraemia in children hospitalised during the 1996-1997 dengue-2 outbreak in French Polynesia. J Med Virol. 2000;60:432-8. https://doi.org/10.1002/(SICI)1096-9071(200004)60:4<432::AID-JMV11>3.0.CO;2-7

Halstead SB, Porterfield JS, O’Rourke EJ. Enhancement of dengue virus infection in monocytes by flavivirus antisera. Am J Trop Med Hyg. 1980;29:638-42.

Alagarasu K, Damle I, Bachal R, Mulay A, Shah P, Dayaraj C. Association of promoter region polymorphisms of CD209 gene with clinical outcomes of dengue virus infection in Western India. Infect Genet Evol. 2013;17:239-42. https://doi.org/10.1016/j.meegid.2013.04.024

Restrepo BN, Ramírez RE, Arboleda M, Álvarez G, Ospina M, Díaz FJ. Serum levels of cytokines in two ethnic groups with dengue virus infection. Am J Trop Med Hyg. 2008;79:673-7.

Malavige GN, Huang LC, Salimi M, Gomes L, Jayaratne SD, Ogg GS. Cellular and cytokine correlates of severe dengue infection. PLoS One. 2012;7:1-9. https://doi.org/10. 1371/journal.pone.0050387

Castro JE, Vado-Solís I, Pérez-Osorio C, Fredeking TM. Modulation of cytokine and cytokine receptor/antagonist by treatment with doxycycline and tetracycline in patients with dengue fever. Clin Dev Immunol. 2011;2011:1-5. https://doi.org/10.1155/2011/370872

Gandini M, Reis SR, Torrentes-Carvalho A, Azeredo EL, Freire Mda S, Galler R, et al. Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-alpha and IFN-alpha profiles. Mem Inst Oswaldo Cruz. 2011;106:594-605. https://doi.org/10.1590/S0074-02762011000500012

Perry ST, Buck MD, Lada SM, Schindler C, Shresta S. STAT2 mediates innate immunity to Dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS Pathog. 2011;7:1-13. https://doi.org/10.1371/journal.ppat.1001297

Restrepo BN, Isaza DM, Salazar CL, Ramírez R, Ospina M, Álvarez LG. Serum levels of interleukin-6, tumor necro-sis factor-alpha and interferon-gamma in infants with and without dengue. Rev Soc Bras Med Trop. 2008;41:6-10. https://doi.org/10.1590/S0037-86822008000100002

Lan NT, Hirayama K. Host genetic susceptibility to severe dengue infection. Trop Med Health. 2011;39:73-81. http://doi.org/10.2149/tmh.2011-S08

Sessions OM, Tan Y, Goh KC, Liu Y, Tan P, Rozen S, et al. Host cell transcriptome profile during wild-type and attenuated dengue virus infection. PLoS Negl Trop Dis. 2013;7:1-12. https://doi.org/10.1371/journal.pntd.0002107

Loeb M. Genetic susceptibility to west nile virus and dengue. Public Health Genomics. 2013;16:4-8. https://doi.org/10.1159/000345934

Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7:781-91. https://doi.org/10.1038/nrg1916

Harapan H, Jonny KF, Nur W, Jay RA, Lavanya N, Kurnia FJ. Non-HLA gene polymorphisms and their implications on dengue virus infection. Egyptian Journal of Medical Human Genetics. 2013;14:1-11. https://doi.org/10.1016/j.ejmhg.2012.08.003

Cansancao IF, Carmo AP, Leite RD, Rabenhorst SH. Asso-ciation of polymorphisms in IL1beta -511C>T, IL1RN 86 bp VNTR, and IL6 -174G>C Genes with clinical dengue signs and symptoms in Brazilian dengue patients. Viral Immunol. 2016;29:372-6. https://doi.org/10.1089/vim.2015.0082

Woo P, Humphries SE. IL-6 polymorphisms: A useful genetic tool for inflammation research? J Clin Invest. 2013; 123:1413-4. https://doi.org/10.1172/JCI67221

Moreira LO, Zamboni DS. NOD1 and NOD2 signaling in infection and inflammation. Front Immunol. 2012;3:1-12. https://doi.org/10.3389/fimmu.2012.00328

Fernández-Mestre MT, Gendzekhadze K, Rivas-Vetencourt P, Layrisse Z. TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens. 2004;64:469-72. https://doi.org/10.1111/j. 1399-0039.2004.00304.x

He JR, Chen LJ, Su Y, Cen YL, Tang LY, Yu DD, et al. Joint effects of Epstein-Barr virus and polymorphisms in interleukin-10 and interferon-gamma on breast cancer risk. J Infect Dis. 2011;205:64-71. https://doi.org/10.1093/infdis/jir710

Pérez AB, Sierra B, García G, Aguirre E, Babel N, Álvarez M, et al. Tumor necrosis factor-alpha, transforming growth factor-beta1, and interleukin-10 gene polymor-phisms: Implication in protection or susceptibility to dengue hemorrhagic fever. Hum Immunol. 2010;71:1135-40. https://doi.org/10.1016/j.humimm.2010.08.004

Galanter JM, Fernández-López JC, Gignoux CR, Barnholtz-Sloan J, Fernández-Rozadilla C, Via M, et al. Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas. PLoS Genet. 2012;8:1-16. https://doi.org/10.1371/journal.pgen. 1002554

World Health Organization. Dengue haemorrhagic fever. Diagnosis, treatment, prevention and control. Geneva: WHO; 1997. p. 12-23.

Blacksell SD, Jarman RG, Gibbons RV, Tanganuchitcharnchai A, Mammen MP Jr., Nisalak A, et al. Comparison of seven commercial antigen and antibody enzyme-linked immunosorbent assays for detection of acute dengue infection. Clin Vaccine Immunol. 2012;19:804-10. https://doi.org/10.1128/CVI.05717-11

Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30:545-51.

Harris E, Roberts TG, Smith L, Selle J, Kramer LD, Valle S, et al. Typing of dengue viruses in clinical specimens and mosquitoes by single-tube multiplex reverse transcriptase PCR. J Clin Microbiol. 1998;36:2634-9.

Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006; 2006:pii. https://doi.org/10.1101/pdb.prot4455

Molokhia M, Hoggart C, Patrick AL, Shriver M, Parra E, Ye J, et al. Relation of risk of systemic lupus erythematosus to west African admixture in a Caribbean population. Hum Genet. 2003;112:310-8. https://doi.org/10.1007/s00439-002-0883-3

Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C, et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet. 2003;112:387-99. https://doi.org/10.1007/s00439-002-0896-y

Chacón-Duque JC, Adhikari K, Avendaño E, Campo O, Ramírez R, Rojas W, et al. African genetic ancestry is associated with a protective effect on dengue severity in colombian populations. Infect Genet Evol. 2014;27:89-95. https://doi.org/10.1016/j.meegid.2014.07.003

McKeigue PM, Carpenter JR, Parra EJ, Shriver MD. Estimation of admixture and detection of linkage in admixed populations by a Bayesian approach: Application to African-American populations. Ann Hum Genet. 2000;64:171-86. https://doi.org/10.1017/S0003480000008022

Zhivotovsky LA. Relationships between Wright’s F ST and F IS statistics in a context of Wahlund effect. J Hered. 2015;106:306-9. https://doi.org/10.1093/jhered/esv019

Chua KB, Mustafa B, Abdul AH, Chem YK, Khairul AH, Kumarasamy V, et al. A comparative evaluation of dengue diagnostic tests based on single-acute serum samples for laboratory confirmation of acute dengue. Malays J Pathol. 2011;33:13-20.

Blanton RE, Silva LK, Morato VG, Parrado AR, Dias JP, Melo PR, et al. Genetic ancestry and income are asso-ciated with dengue hemorrhagic fever in a highly admixed population. Eur J Hum Genet. 2008;16:762-5. https://doi.org/10.1038/ejhg.2008.4

Clark TG, Diakite M, Auburn S, Campino S, Fry AE, Green A, et al. Tumor necrosis factor and lymphotoxin-alpha polymorphisms and severe malaria in African popu-lations. J Infect Dis. 2009;199:569-75. https://doi.org/10. 1086/596320

Ng DP, Nurbaya S, Ye SH, Krolewski AS. An IL-6 haplotype on human chromosome 7p21 confers risk for impaired renal function in type 2 diabetic patients. Kidney Int. 2008;74:521-7. https://doi.org/10.1038/ki.2008.202

Farhat SB, de Souza CM, Braosi AP, Kim SH, Tramontina VA, Papalexiou V, et al. Complete physical mapping of IL6 reveals a new marker associated with chronic periodontitis. J Periodontal Res. 2016. https://doi.org/10.1111/jre.12389

Qi L, van Dam RM, Meigs JB, Manson JE, Hunter D, Hu FB. Genetic variation in IL6 gene and type 2 diabetes: Tagging-SNP haplotype analysis in large-scale case-control study and meta-analysis. Hum Mol Genet. 2006;15:1914-20. https://doi.org/10.1093/hmg/ddl113

Fernández-Real JM, Broch M, Vendrell J, Richart C, Ricart W. Interleukin-6 gene polymorphism and lipid abnor-malities in healthy subjects. J Clin Endocrinol Metab. 2000; 85:1334-9. https://doi.org/10.1210/jcem.85.3.6555

Stahl EA, Wegmann D, Trynka G, Gutiérrez-Achury J, Do R, Voight BF, et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat Genet. 2012;44:483-9. https://doi.org/10.1038/ng.2232

Restrepo BN, Ramírez R, Agudelo-Flórez PM, Avendaño-Tamayo E, Chacón-Duque JC, Rojas W, et al. Caracterís-ticas clínicas y niveles de citocinas en pacientes con dengue y su relación con la raza. Rev Biomed. 2010;21:137-47.

Silva LK, Blanton RE, Parrado AR, Melo PS, Morato VG, Reis EA, et al. Dengue hemorrhagic fever is associated with polymorphisms in JAK1. Eur J Hum Genet. 2010;18:1221-7. https://doi.org/10.1038/ejhg.2010.98

Rachman A, Rinaldi I. Coagulopathy in dengue infection and the role of interleukin-6. Acta Med Indones. 2006;38:105-8.

Woodson SE, Freiberg AN, Holbrook MR. Coagulation factors, fibrinogen and plasminogen activator inhibitor-1, are differentially regulated by yellow fever virus infection of hepatocytes. Virus Res. 2013;175:155-9. https://doi.org/10. 1016/j.virusres.2013.04.013

Rausch SM, Clark MM, Patten C, Liu H, Felten S, Li Y, et al. Relationship between cytokine gene single nucleotide polymorphisms and symptom burden and quality of life in lung cancer survivors. Cancer. 2010;116:4103-13. https://doi.org/10.1002/cncr.25255

Sinha S, Mishra SK, Sharma S, Patibandla PK, Mallick PK, Sharma SK, et al. Polymorphisms of TNF-enhancer and gene for FcgammaRIIa correlate with the severity of falciparum malaria in the ethnically diverse Indian population. Malar J. 2008;7:1-11. https://doi.org/10.1186/1475-2875-7-13

He JR, Chen LJ, Su Y, Cen YL, Tang LY, Yu DD, et al. Joint effects of Epstein-Barr virus and polymorphisms in interleukin-10 and interferon-gamma on breast cancer risk. J Infect Dis. 2012;205:64-71. https://doi.org/10.1093/infdis/jir710

Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine. 2013;31:461-71. https://doi.org/10.1016/j.vaccine.2012.11.015

Kim K, Cho SK, Sestak A, Namjou B, Kang C, Bae SC. Interferon-gamma gene polymorphisms associated with susceptibility to systemic lupus erythematosus. Ann Rheum Dis. 2010;69:1247-50. https://doi.org/10.1136/ard. 2009.117572

Wang D, Zhong X, Huang D, Chen R, Bai G, Li Q, et al. Functional polymorphisms of interferon-gamma affect pneumonia-induced sepsis. PLoS One. 2014;9:1-8. https://doi.org/10.1371/journal.pone.0087049

Publicado
2017-12-01
Cómo citar
Avendaño-Tamayo, E., Campo, O., Chacón-Duque, J. C., Ramírez, R., Rojas, W., Agudelo-Flórez, P., Bedoya, G., & Restrepo, B. (2017). Variantes en los genes TNFA, IL6 e IFNG asociadas con la gravedad del dengue en una muestra de población colombiana. Biomédica, 37(4), 486-497. https://doi.org/10.7705/biomedica.v37i4.3305
Sección
Artículos originales

Artículos más leídos del mismo autor/a