Resultados de la vigilancia nacional de la resistencia antimicrobiana de enterobacterias y bacilos Gram negativos no fermentadores en infecciones asociadas a la atención de salud, Colombia, 2012-2014

María Victoria Ovalle, Sandra Yamile Saavedra, María Nilse González, Andrea Melissa Hidalgo, Carolina Duarte, Mauricio Beltrán, .

Palabras clave: Drug resistance, microbial, bacterial infections, surveillance, carbapenems, Enterobacteriaceae, Acinetobacter, Pseudomonas

Resumen

Introducción. En el tercer trimestre de 2012, comenzó a operar el Sistema Nacional de Vigilancia de Resistencia Antimicrobiana en las infecciones asociadas a la atención en salud, con el fin de recabar y analizar la información referente al problema en Colombia.
Objetivo. Describir los perfiles de resistencia y los resultados de la vigilancia por el laboratorio con base en los datos recolectados en el Sistema.
Materiales y métodos. Se hizo un estudio descriptivo y retrospectivo con base en la información del Sistema Nacional de Vigilancia en Salud Pública, Sivigila, 1 de septiembre de 2012 a 31 de diciembre de 2014, así como de las bases de datos Whonet con los datos notificados por las unidades primarias generadoras de datos y los resultados de la confirmación por el laboratorio de la caracterización fenotípica y genotípica de la resistencia a carbapenemasas en 1.642 aislamientos (927 de enterobacterias, 614 de Pseudomonas spp. y 101 de Acinetobacter spp.).
Resultados. La resistencia de Escherichia coli a las cefalosporinas de tercera generación presentó un incremento significativo, alcanzando 26,3 % en unidades de cuidados intensivos y 22,5 % en otras áreas de hospitalización. La resistencia a ertapenem de Klebsiella pneumoniae registró un incremento y alcanzó 14,6 % en unidades de cuidados intensivos. La resistencia de Acinetobacter baumannii a los carbapenémicos superó el 50 % en dichas unidades, en tanto que en Pseudomonas aeruginosa se presentaron porcentajes más bajos (38,8 %). Las carbapenemasas más frecuentes en enterobacterias fueron la KPC (n=574), seguida de la NDM (n=57); en P. aeruginosa, la VIM (n=229) y la KPC (n=114), y en A. baumannii, la OXA-23 (n=87). Se detectaron varias combinaciones de carbapenemasas, siendo la de KPC y VIM la más frecuente en Pseudomonas spp., y en enterobacterias.
Conclusión. La información obtenida a partir del Sistema Nacional de Vigilancia ha permitido conocer los perfiles y los mecanismos de resistencia a carbapenémicos de las cepas que están circulando en las instituciones de salud del país.

Descargas

Los datos de descargas todavía no están disponibles.
  • María Victoria Ovalle Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia http://orcid.org/0000-0003-0674-859X
  • Sandra Yamile Saavedra Programa de Vigilancia de Resistencia Antimicrobiana en Infecciones Asociadas a la Atención en Salud, Grupo de Microbiología, Subdirección Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • María Nilse González Programa de Vigilancia de Resistencia Antimicrobiana en Infecciones Asociadas a la Atención en Salud, Grupo de Microbiología, Subdirección Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • Andrea Melissa Hidalgo Programa de Vigilancia de Resistencia Antimicrobiana en Infecciones Asociadas a la Atención en Salud, Grupo de Microbiología, Subdirección Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • Carolina Duarte Programa de Vigilancia de Resistencia Antimicrobiana en Infecciones Asociadas a la Atención en Salud, Grupo de Microbiología, Subdirección Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
  • Mauricio Beltrán Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia

Referencias bibliográficas

Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and healthcare costs. Clin Infect Dis. 2006;15:S82-9. https://doi.org/10.1086/499406

Organización Mundial de la Salud. Estrategia mundial de la OMS para contener la resistencia a los antimicrobianos, 2001. Fecha de consulta: 19 de agosto de 2013. Disponible en: http://www.antibioticos.msssi.gob.es/PDF/resist_OMS_estrategia_mundial_contra_resistencias.pdf.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; approved standard. Twenty third information supplement. Document M100-S24. Wayne: CLSI; 2014.

Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S. Rapid detection of carbapenemase gene by multiplex real-time PCR. J Antimicrob Chemother. 2012; 67:906-9. https://doi.org/10.1093/jac/dkr563

Bonnin RA, Naas T, Poirel L, Nordmann P. Phenotypic, biochemical, and molecular techniques for detection of metallo-β-lactamase NDM in Acinetobacter baumannii. J Clin Microbiol. 2012;50:1419-21. https://doi.org/doi:10.1128/JCM.06276-11

Garza-Ramos U, Morfin-Otero R, Sader HS, Jones RN, Hernández E, Rodríguez-Noriega E, et al. Metallo-beta-lactamase gene bla(IMP-15) in a class 1 integron, In95, from Pseudomonas aeruginosa clinical isolates from a hospital in México. Antimicrob Agents Chemother. 2008;52:2943-6. https://doi.org/10.1128/AAC.00679-07

Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119-23. https://doi.org/10.1016/j.diagmicrobio.2010.12.002

Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27:351-3. https://doi.org/10.1016/j.ijantimicag.2006.01.004

Higgins PG, Lehmann M, Seifert H. Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2010;35:305. https://doi.org/10.1016/j.ijantimicag.2009.10.014

Jones RN, Masterton R. Determining the value of anti-microbial surveillance programs. Diagn Microbiol Infect Dis. 2001;41:172-5. https://doi.org/10.1016/S0732-8893(01) 00318-2

Organización Panamericana de la Salud. Informe Anual de la Red de Monitoreo/Vigilancia de la Resistencia a los Antibió-ticos. 2010. Fecha de consulta: 2 de diciembre de 2016. Dis-ponible en: http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=24101&Itemid=).

Villalobos A, Díaz M, Barrero L, Rivera S, Henríquez D, Villegas M, et al. Tendencias de los fenotipos de resistencia bacteriana en hospitales públicos y privados de alta complejidad de Colombia. Rev Panam Salud Pública. 2011;30:627-33. https://doi.org/10.1590/S1020-49892011001200022

Grupo para el Estudio de la Resistencia de los Antimicrobianos en Medellín. Microorganismos. Fecha de consulta: 20 de diciembre de 2015. Disponible en: http://www.grupogermen.org/microorganismos.html.

Secretaría Distrital de Salud Pública de Bogotá. Boletín IAAS 2014. Fecha de consulta: 11 de diciembre de 2016. Disponible en: http://www.saludcapital.gov.co/DSP/Resistencia%20Bacteriana/Boletines/Bolet%C3%ADn%20IAAS%202014.pdf.

Grupo para el Control de Resistencia Bacteriana de Bogotá (GREBO). Boletín informativo, años 2012-2014. Fecha de consulta: 11 de diciembre de 2016. Disponible en: http://www.grebo.org/grebo_site/jgrebo/index.php?option =com_content&view=article&id=73&Itemid=469

Villegas M, Lolans K, Correa A, Suárez C, López J, Vallejo M, et al. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother. 2006;50:2880-2. https://doi.org/10.1128/AAC. 00186-06

López JA, Correa A, Navon-Venezia S, Correa AL, Torres JA, Briceño DF, et al. Intercontinental spread from Israel to Colombia of a KPC-3-producing Klebsiella pneumoniae strain. Clin Microbiol Infect. 2011;17:52-6. https://doi.org/10. 1111/j.1469-0691.2010.03209.x

Mojica MF, Correa A, Vargas DA, Maya JJ, Montealegre MC, Rojas LJ, et al. Molecular correlates of the spread of KPC-producing Enterobacteriaceae in Colombia. Int J Antimicrob Agents. 2012;40:277-85. https://doi.org/10. 1016/j.ijantimicag.2012.05.006

Instituto de Salud Pública de Chile. Programa de Control de Infecciones Asociadas a la Atención en Salud. Boletín de Resistencia Antimicrobiana, 2015. Fecha de consulta: 9 de diciembre de 2016. Disponible en: http://www.ispch.cl/sites/default/files/BoletinRam-30112015A_0.pdf

Lefebvre B, Lévesque S, Bourgault AM, Mulvey MR, Mataseje, Boyd D, et al. Carbapenem non-susceptible Enterobacteriaceae in Quebec, Canada: Results of Labora-tory Surveillance Program (2010-2012). PLoS One. 2015;10: e0125076. https://doi.org/10.1371/journal.pone.0125076

Saavedra SY, Duarte C, González MN, Ovalle MV. Emer-gencia de Providencia rettgeri NDM-1 en dos departamentos de Colombia, 2012-2013. Enferm Infecc Microbiol Clin. 2015. https://doi.org/10.1016/j.eimc.2015.05.011

O’Mahony R, Quinn T, Drudy D, Walsh C, Whyte P, Mattar S. Antimicrobial resistance in nontyphoidal Salmonella from food sources in Colombia: Evidence for an unusual plasmid-localized class 1 integron in serotypes Typhimurium and Anatum. Microb Drug Resist. 2006;12:269-77. https://doi.org/10.1089/mdr.2006.12.269

Ribeiro VB, Falci DR, Rozales FP, Barth AL, Zavascki AP. Carbapenem-resistant GES-5-producing Klebsiella pneumoniae in Southern Brazil. Braz J Infect Dis. 2014; 18:231-2. https://doi.org/10.1016/j.bjid.2013.12.002

Boyd D, Taylor G, Fuller J, Bryce E, Embree J, Gravel D, et al. Complete sequence of four multidrug-resistant MOBQ1 Plasmids harboring blaGES-5 isolated from Escherichia coli and Serratia marcescens persisting in a Hospital in Canada. Canadian Nosocomial Infection Surveillance Program. Microb Drug Resist. 2015;21:253-60. https://doi.org/10. 1089/mdr.2014.0205

Silva F, Cifuentes M, Pinto E. Resultados de la vigilancia de susceptibilidad antimicrobiana en Chile: consolidando una red. Rev Chil Infect. 2011;28:19-27. https://doi.org/10.4067/S0716-10182011000100004

Correa A, Del Campo R, Perenguez M, Blanco VM, Rodríguez-Baños M, Pérez F, et al. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in Colombia. Antimicrob Agents Chemother. 2015;59:2421-5. https://doi.org/10.1128/AAC.03926-14

Vanegas JM, Cienfuegos AV, Ocampo AM, López L, del Corral H, Roncancio G, et al. Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. J Clin Microbiol. 2014;52: 3978-86. https://doi.org/10.1128/JCM.01879-14

Dortet L, Poirel L, Nordmann P. Worldwide dissemina-tion of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int. 2014;2014:249.856. https://doi.org/10.1155/2014/249856

Villegas MV, Kattan JN, Correa A, Lolans K, Guzmán AM, Woodford N, et al. Dissemination of Acinetobacter baumannii clones with OXA-23 carbapenemase in Colombian hospitals. Antimicrob Agents Chemother. 2007;51:2001-4. https://doi.org/10.1128/AAC.00226-07

Saavedra SY, Núñez JC, Pulido IY, González EB, Valenzuela EM, Reguero MT, et al. Characterization of carbapenem-resistant Acinetobacter calcoaceticus--A. baumannii complex isolates in a third level hospital in Bogotá, Colombia. Int J Antimicrob Agents. 2008;31:389-91. https://doi.org/10.1016/j.ijantimicag.2007.12.008

Mostachio AK, Levin AS, Rizek C, Rossi F, Zerbini J, Costa SF. High prevalence of OXA-143 and alteration of outer membrane proteins in carbapenem-resistant Acinetobacter spp. isolates in Brazil. Int J Antimicrob Agents. 2012;39:396-401. https://doi.org/10.1016/j.ijantimicag.2012.01.021

Zander E, Bonnin RA, Seifert H, Higgins PG. Characteri-zation of blaOXA-143 variants in Acinetobacter baumannii and Acinetobacter pittii. Antimicrob Agents Chemother. 2014;58:2704-8. https://doi.org/10.1128/AAC.02618-13

Correa A, Montealegre MC, Mojica MF, Maya JJ, Rojas LJ, De La Cadena EP, et al. First report of a Pseudomonas aeruginosa isolate coharboring KPC and VIM carbapenemases. Antimicrob Agents Chemother. 2012;56: 5422-3. https://doi.org/10.1128/AAC.00695-12

Saavedra SY, Duarte C, González MN, Realpe ME. Carac-terización de aislamientos de Pseudomonas aeruginosa productores de carbapenemasas de siete departamentos de Colombia. Biomédica. 2014;34:217-23. https://doi.org/10. 7705/biomedica.v34i0.1685

Rojas LJ, Mojica MF, Blanco VM, Correa A, Montealegre MC, De La Cadena E, et al. Emergence of Klebsiella pneumoniae coharboring KPC and VIM carbapenemases in Colombia. Antimicrob Agents Chemother. 2013;57:1101-2. https://doi.org/10.1128/AAC.01666-12

Quiles MG, Rocchetti TT, Fehlberg LC, Kusano EJ, Chebabo A, Pereira RM, et al. Unusual association of NDM-1 with KPC-2 and armA among Brazilian Entero-bacteriaceae isolates. Braz J Med Biol Res. 2015;48:174-7. https://doi.org/10.1590/1414-431X20144154

Karthikeyan K, Thirunarayan MA, Krishnan P. Coexistence and armA in clinical isolates of Acinetobacter baumannii from India. J Antimicrobial Chemother. 2010;65:2253-4. https://doi.org/10.1093/jac/dkq273

Cómo citar
1.
Ovalle MV, Saavedra SY, González MN, Hidalgo AM, Duarte C, Beltrán M. Resultados de la vigilancia nacional de la resistencia antimicrobiana de enterobacterias y bacilos Gram negativos no fermentadores en infecciones asociadas a la atención de salud, Colombia, 2012-2014. biomedica [Internet]. 1 de diciembre de 2017 [citado 28 de marzo de 2024];37(4):473-85. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/3432

Algunos artículos similares:

Publicado
2017-12-01
Sección
Artículos originales

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code