Aceites esenciales y sus constituyentes como una alternativa en el control de mosquitos vectores de enfermedades

  • Sergio Andrade Ochoa Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
  • Luvia E. Sánchez-Torres Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
  • Guadalupe Virginia Nevárez-Moorillón Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
  • Alejandro D. Camacho Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
  • Benjamín Nogueda-Torres Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
Palabras clave: Aceites Esenciales, Actividad Larvicida, Terpenos, Enfermedades Transmitidas por Vectores, Entomología Médica, Fitoquímicos, Control Biológico, Actividad Repelente.

Resumen

Más de la mitad de la población humana está expuesta a contraer infecciones transmitidas por los mosquitos. El cambio climático y la aparición de cepas resistentes a los insecticidas tradicionalmente utilizados, han motivado la búsqueda de nuevos agentes capaces de controlar las poblaciones de mosquitos. Los aceites esenciales han resultado ser eficaces agentes repelentes y larvicidas. El objetivo de la presente revisión es denotar las investigaciones llevadas a cabo en los últimos años sobre la actividad larvicida de los aceites esenciales y sus constituyentes contra mosquitos de los géneros Aedes, Anopheles y Culex, así como exhibir los últimos reportes sobre su posible mecanismo de acción.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Kumar K, Sharma AK, Kumar S, Patel S, Sarkar M, Chauhan LS. Multiple insecticide resistance/susceptibility status of Culex quinquefasciatus, principal vector of ban-croftian filariasis from filaria endemic areas of northern India. Asian Pac J Trop Dis. 2011;4:426-9. https://doi.org/10. 1016/S1995-7645(11)60119-3

Tatem AJ, Huang Z, Das A, Qi Q, Roth J, Qiu Y. Air travel and vector-borne disease movement. Parasitol. 2012;139:1816-30. https://doi.org/10.1017/S0031182012000352

Ramaiah KD, Ottesen EA. Progress and impact of 13 years of the Global Programme to Eliminate Lymphatic Filariasis on reducing the burden of filarial disease. PLoS Negl Trop Dis. 2014;8:e3319. https://doi.org/10.1371/journal.pntd.0003319

Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140135. https://doi.org/10.1098/rstb.2014.0135

Bhatia R, Dash AP, Sunyoto T. Changing epidemiology of dengue in South-East Asia. WHO South East Asia J Public Health. 2013;2:23. https://doi.org/10.4103/2224-3151.115830

Tolle MA. Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care. 2009;39:97-140. https://doi.org/10. 1016/j.cppeds.2009.01.001

Fischer D, Thomas SM, Suk JE, Sudre B, Hess A, Tjaden NB, et al. Climate change effects on Chikungunya transmission in Europe: Geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int J Health Geogr. 2013;12:51. https://doi.org/10.1186/1476-072X-12-51

van Bortel W, Dorleans F, Rosine J, Blateau A, Rousset D, Matheus S, et al. Chikungunya outbreak in the Caribbean region, December 2013 to March 2014, and the significance for Europe. Euro Surveill. 2014;19:20759.

World Health Organization. World Malaria Report 2015. Geneva: WHO; 2015. Fecha de consulta: 15 de junio de 2015. Disponible en: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/.

Béguin A, Hales S, Rocklöv J, Åström C, Louis VR, Sauerborn R. The opposing effects of climate change and socio-economic development on the global distribution of malaria. Glob Environ Chang. 2011;21:1209-14. https://doi.org/10.1016/j.gloenvcha.2011.06.001

Laniak GF, Olchin G, Goodall J, Voinov A, Hill M, Glynn P, et al. Integrated environmental modeling: A vision and roadmap for the future. Environ Model Softw. 2013;39:3-23. https://doi.org/10.1016/j.envsoft.2012.09.006

Shuman EK. Global climate change and infectious diseases. New Eng J Med. 2010;362:1061-3. https://doi.org/10.1056/NEJMp0912931

Ocampo CB, Salazar-Terreros MJ, Mina NJ, McAllister J, Brogdon W. Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Trop. 2011;118:37-44. https://doi.org/10.1016/j.actatropica.2011.01.007

Miranda JE, Navickiene HM, Nogueira-Couto RH, De Bortoli SA, Kato MJ, da Silva Bolzani V, et al. Susceptibility of Apis mellifera (Hymenoptera: Apidae) to pellitorine, an amide isolated from Piper tuberculatum (Piperaceae). Apidologie. 2003;34:409-15. https://doi.org/10.1051/apido: 2003036

Lin H, Chuan-hua X, Jin-jun W, Ming L, Wen-cai L, Zhi-mo Z. Resistance selection and biochemical mechanism of resistance to two acaricides in Tetranychus cinnabarinus (Boiduval). Pest Biochem Physiol. 2009;93:47-52. https://doi.org/10.1016/j.pestbp.2008.11.001

Matowo J, Kitau J, Kabula B, Kavishe R, Oxborough R, Kaaya R, et al. Dynamics of insecticide resistance and the frequency of kdr mutation in the primary malaria vector Anopheles arabiensis in rural villages of Lower Moshi, North Eastern Tanzania. J Parasitol Vector Biol. 2014;6:31-41. https://doi.org/10.5897/JPVB2013.0143

Vontas J, Kioulos E, Pavlidi N, Morou E, Della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pest Biochem Physiol. 2012;104:126-31. https://doi.org/10.1016/j.pestbp. 2012.05.008

Chino-Cantor A, Sánchez-Arroyo H, Ortega-Arenas LD, Castro-Hernández E. Insecticide susceptibility of Aedes aegypti L. (Diptera: Culicidae) in Guerrero, México. Southwestern Entomol. 2014;39:601-12. https://doi.org/10. 3958/059.039.0319

Overgaard HJ, Sandve SR, Suwonkerd W. Evidence of anopheline mosquito resistance to agrochemicals in northern Thailand. Southeast Asian J Trop Med Public Health.2005;36(Suppl.4):152-7.

Conde M, Orjuela LI, Castellanos CA, Herrera-Varela M, Licastro S, Quiñones ML. Insecticide susceptibility evaluation in Aedes aegypti populations of Caldas, Colombia, in 2007 and 2011. Biomédica. 2015;35:43-52. https://doi.org/10.7705/biomedica.v35i1.2367

Langenheim JH. Higher plant terpenoids: A phytocentric overview of their ecological roles. J Chem Ecol. 1994;20: 1223-80. https://doi.org/10.1007/BF02059809

Wang ZQ, Perumalsamy H, Wang M, Shu S, Ahn YJ. Larvicidal activity of Magnolia denudata seed hydrodistillate constituents and related compounds and liquid formulations towards two susceptible and two wild mosquito species. Pest Manag Sci. 2015;72:897-906. https://doi.org/10.1002/ps.4064

Massebo F, Tadesse M, Bekele T, Gebre-Michael MB. Evaluation on larvicidal effects of essential oils of some local plants against Anopheles arabiensis Patton and Aedes aegypti Linnaeus (Diptera, Culicidae) in Ethiopia. Afr J Biotechnol. 2009;8:4183.

Castillo S, Pérez-Alfonso CO, Martínez-Romero D, Guillén F, Serrano M, Valero D. The essential oils timol and carvacrol applied in the packing lines avoid lemon spoilage and maintain quality during storage. Food Control. 2014;35: 132-6. https://doi.org/10.1016/j.foodcont.2013.06.052

Bakkali F, Averbeck S. Averbeck D, Idaomar M. Biological effects of essential oils–a review. Food Chem Toxicol. 2008;46:446-75. https://doi.org/10.1016/j.fct.2007.09.106

Burt S. Essential oils: Their antibacterial properties and potential applications in foods–a review. Int J Food Microbiol. 2004;94:223-53. https://doi.org/10.1016/j.ijfoodmicro.2004. 03.022

Pesavento G, Calonico C, Bilia AR, Barnabei M, Calesini F, Addona R, et al. Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control. 2015;54:188-99. https://doi.org/10.1016/j.foodcont.2015.01.045

Sarac N, Ugur A. Antimicrobial activities of the essential oils of Origanum onites L., Origanum vulgare L. subspecies hirtum (Link) Ietswaart, Satureja thymbra L., and Thymus cilicicus Boiss. & Bal. growing wild in Turkey. J Med Food. 2008;11:568-73. https://doi.org/10.1089/jmf.2007.0520

Santoro GF, das Graças Cardoso M, Guimarães LG, Salgado AP, Menna-Barreto RF, Soares MJ. Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol Res. 2007;100:783-90. https://doi.org/10.1007/s00436-006-0326-5

Prophiro JS, da Silva MA, Kanis LA, da Silva BM, Duque-Luna JE, da Silva OS. Evaluation of time toxicity, residual effect, and growth-inhibiting property of Carapa guianensis and Copaifera sp. in Aedes aegypti. Parasitol Res. 2012;110:713-9. https://doi.org/10.1007/s00436-011-2547-5

Batish DR, Singh HP, Kohli RK, Kaur S. Eucalyptus essen-tial oil as a natural pesticide. Forest Ecol Manag. 2008;256: 2166-74. https://doi.org/10.1016/j.foreco.2008.08.008

Kiran SR, Bhavani K, Devi PS, Rao BR, Reddy KJ. Composition and larvicidal activity of leaves and stem essen-tial oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol. 2006;97: 2481-4. https://doi.org/10.1016/j.biortech.2005.10.003

World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. Geneva: WHO; 2005. Fecha de consulta: 15 de junio de 2015. Disponible en: http://www.who.int/whopes/guidelines/en/.

Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, et al. Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: What happens around? An acute toxicity survey on non-target mayflies. Parasitol Res. 2015;114:1011-21. https://doi.org/10. 1007/s00436-014-4267-0

Liu XC, Liu QY, Zhou L, Liu ZL. Evaluation of larvicidal activity of the essential oil of Allium macrostemon Bunge and its selected major constituent compounds against Aedes albopictus (Diptera: Culicidae). Parasit Vector. 2014;7:184. https://doi.org/10.1186/1756-3305-7-184

Moon HI. Larvicidal activity of major essential oils from stems of Allium monanthum Maxim. against Aedes aegypti L. J Enzyme Inhib Med Chem. 2011;26:827-30. https://doi.org/10.3109/14756366.2011.558842

Tabanca N, Gao Z, Demirci B, Techen N, Wedge DE, Ali A, et al. Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum Species. J Agric Food Chem. 2014;62:8848-57. https://doi.org/10.1021/jf5024752

Santos GK, Dutra KA, Barros RA, da Câmara CA, Lira DD, Gusmão NB, et al. Essential oils from Alpinia purpurata (Zingiberaceae): Chemical composition, oviposi-tion deterrence, larvicidal and antibacterial activity. Ind Crop Prod. 2012;40:254-60. https://doi.org/10.1016/j.indcrop.2012. 03.020

Pitasawat B, Champakaew D, Choochote W, Jitpakdi A, Chaithong U, Kanjanapothi D, et al. Aromatic plant-derived essential oil: An alternative larvicide for mosquito control. Fitoterapia. 2007;78:205-10. https://doi.org/10.1016/j.fitote. 2007.01.003

Cheah SX, Tay JW, Chan LK, Jaal Z. Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2013;112:3275-82. https://doi.org/10.1007/s00436-013- 3506-0

Zhu L, Tian Y. Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol Res. 2013;112:1137-42. https://doi.org/10.1007/s00436-012-3243-9

Perumalsamy H, Chang KS, Park C, Ahn YJ. Larvicidal activity of Asarum heterotropoides root constituents against insecticide-susceptible and-resistant Culex pipiens pallens and Aedes aegypti and Ochlerotatus togoi. J Agric Food Chem. 2010:58:10001-6. https://doi.org/10.1021/jf102193k

Arun KD, Kumar S, Swamy JP. Larvicidal activity and leaf essential oil composition of three species of genus Atalantia from south India. Int J Mos Res. 2015;2:25-9.

Zhu L, Tian Y. Chemical composition and larvicidal activity of Blumea densiflora essential oils against Anopheles anthropophagus: A malarial vector mosquito. Parasitol Res. 2011;109:1417-22. https://doi.org/10.1007/s00436-011-2388-2

Senthilkumar A, Kannathasan K, Venkatesalu V. Chemical constituents and larvicidal property of the essential oil of Blumea mollis (D. Don) Merr. against Culex quinquefasciatus. Parasitol Res. 2008;103:959-62. https://doi.org/10.1007/s00436-008-1085-2

Tan LTH, Lee LH, Yin WF, Chan CK, Abdul Kadir H, Chan KG, et al. Traditional uses, phytochemistry, and bio-activities of Cananga odorata (Ylang-Ylang). Evid Based Complement Alternat Med. 2015;2015:896314. https://doi.org/10.1155/2015/896314

Souza LG, Almeida MC, Monte FJ, Santiago GM, Braz-Filho R, Lemos TL, et al. Chemical constituents of Capraria biflora (Scrophulariaceae) and larvicidal activity of essential oil. Química Nova. 2012;35:2258-62. https://doi.org/10.1590/S0100-40422012001100032

Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, Chang ST. Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresource Technol. 2009;100:457-64. https://doi.org/10.1016/j.biortech.2008.02.030

Akono PN, Dongmo PM, Tonga C, Kouotou S, Kekeunou S, Magne GT, et al. Larvicidal activity of essential oils from pericarps of ripe Citrus fruits cultivated in Cameroon on pyrethroids sensitive and resistant strains of Anopheles gambiae Giles, 1902. J Entomol Zool Studies. 2015;3:334-9.

Giatropoulos A, Papachristos DP, Kimbaris A, Koliopoulos G, Polissiou MG, Emmanouel N, et al. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol Res. 2012;111:2253-63. https://doi.org/10.1007/s00436-012-3074-8

Tennyson S, Samraj DA, Jeyasundar D, Chalieu K. Larvicidal efficacy of plant oils against the dengue vector Aedes aegypti (L.) (Diptera: Culicidae). Middle-East Journal of Scientific Research. 2013;13:64-8. https://doi.org/10. 5829/idosi.mejsr.2013.13.1.64107

Vera SS, Zambrano DF, Méndez-Sánchez SC, Rodríguez-Sanabria F, Stashenko EE, Luna JE. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2014;113:2647-54. https://doi.org/10.1007/s00436-014-3917-6

Govindarajan M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pac J Trop Med. 2010;3:874-7. https://doi.org/10.1016/S1995-7645(10)60210-6

Govindarajan M, Sivakumar R, Rajeswary M, Veerakumar K. Mosquito larvicidal activity of timol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasitol Res. 2013;112:3713-21. https://doi.org/10.1007/s00436-013-3557-2

Ali A, Wang YH, Khan IA. Larvicidal and biting deterrent activity of essential oils of Curcuma longa, ar-turmerone, and curcuminoids against Aedes aegypti and Anopheles quadrimaculatus (Culicidae: Diptera). J Med Entomol. 2015;52:979-86. https://doi.org/10.1093/jme/tjv072

Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, et al. Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2013;112:1113-1123. https://doi.org/10.1007/s00436-012-3239-5

Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol. 2009;100:452-6. https://doi.org/10.1016/j.biortech. 2008.02.038

Lucía A, González-Audino P, Seccacini, E, Licastro S, Zerba E, Masuh H. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc. 2007;23: 299-303. https://doi.org/10.2987/8756-971X(2007)23[299: LEOEGE]2.0.CO;2

Lucía A, Licastro S, Zerba E, Masuh H. Yield, chemical composition, and bioactivity of essential oils from 12 species of Eucalyptus on Aedes aegypti larvae. Entomol Exp Appl. 2008;129:107-14. https://doi.org/10.1111/j.1570-7458.2008.00757.x

Intirach J, Junkum A, Tuetun B, Choochote W, Chaithong U, Jitpakdi A, et al. Chemical constituents and combined larvicidal effects of selected essential oils against Anopheles cracens (Diptera: Culicidae). Psyche. 2012;2012:1-11. https://doi.org/10.1155/2012/591616

Rocha DK, Matosc O, Novoa MT, Figueiredo AC, Delgado M, Moiteiro C. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde. Nat Prod Commun. 2015;10:677-82.

Aciole SD, Piccoli CF, Costa EV, Navarro-Silva MA, Márques FA, Sales-Maia BH, et al. Insecticidal activity of three species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae). Revista Colombiana de Entomología. 2011;37:262-8.

Liu XC, Liu QY, Zhou L, Liu ZL. Larvicidal activity of essential oil derived from Illicium henryi Diels (Illiciaceae) Leaf. Trop J Pharm Res. 2015;14:111-6. https://doi.org/10. 4314/tjpr.v14i1.16

Tabanca N, Avonto C, Wang M, Parcher JF, Ali A, Demirci B, et al. Comparative investigation of Umbellularia californica and Laurus nobilis leaf essential oils and identification of constituents active against Aedes aegypti. J Agric Food Chem. 2013;61:12283-91. https://doi.org/10.1021/jf4052682

Silva WJ, Dória GA, Maia RT, Nunes RS, Carvalho GA, Blank AF, et al. Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides. Bioresource Technol. 2008;99:3251-5. https://doi.org/10. 1016/j.biortech.2007.05.064

Gleiser RM, Zygadlo JA. Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2007;101:1349-54. https://doi.org/10.1007/s00436-007-0647-z

Lima GP, de Souza TM, de Paula Freire G, Farias DF, Cunha AP, Ricardo NM, et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013;112:1953-8. https://doi.org/10.1007/s00436-013-3351-1

Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou O. Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res. 2010;107: 327-35. https://doi.org/10.1007/s00436-010-1865-3

Lima TC, da Silva TK, Silva FL, Barbosa-Filho JM, Marques MO, Santos RL, et al. Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere. 2014;104:37-43. https://doi.org/10.1016/j.chemosphere.2013.10.035

Raj GA, Chandrasekaran M, Krishnamoorthy S, Jayaraman M, Venkatesalu V. Phytochemical profile and larvicidal properties of seed essential oil from Nigella sativa L. (Ranunculaceae), against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2015;114:3385-91. https://doi.org/10.1007/s00436-015-4563-3

Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K. Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol. 2013;134:7-11. https://doi.org/10. 1016/j.exppara.2013.01.018

Kulkarni RR, Pawar PV, Joseph MP, Akulwad AK, Sen A, Joshi SP. Lavandula gibsoni and Plectranthus mollis essential oils: Chemical analysis and insect control activities against Aedes aegypti, Anopheles sfttephensi and Culex quinquefasciatus. J Pest Sci. 2013;86:713-8. https://doi.org/10.1007/s10340-013-0502-1

Pavela R. Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia-Pacific Entomol. 2014;17:287-93. https://doi.org/10.1016/j.aspen.2014.02.001

Koutsaviti K, Giatropoulos A, Pitarokili D, Papachristos D, Michaelakis A, Tzakou O. Greek Pinus essential oils: Larvicidal activity and repellency against Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2015;114:583-92. https://doi.org/10.1007/s00436-014-4220-2

Gokulakrishnan J, Kuppusamy E, Shanmugam D, Appavu A, Kaliyamoorthi K. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes. Asian Pac J Trop Dis. 2013;3:26-31. https://doi.org/10.1016/S2222-1808(13)60006-7

Maheswaran R, Ignacimuthu S. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicol Environ Saf. 2013;97:26-31. https://doi.org/10.1016/j.ecoenv. 2013.06.028

Conti B, Leonardi M, Pistelli L, Profeti R, Ouerghemmi I, Benelli G. Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L.(Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol Res. 2013;112:991-9. https://doi.org/10.1007/s00436-012-3221-2

López LAP, Yael C, Cirio AT. Essential oils from Zanthoxylum fagara Wild Lime, Ruta chalepensis L. and Thymus vulgaris L.: Composition and activity against Aedes aegypti larvae. Pak J Pharm Sci. 2015;28:1911-5.

Ali A, Demirci B, Kiyan HT, Bernier UR, Tsikolia M, Wedge DE, et al. Biting deterrence, repellency, and larvicidal activity of Ruta chalepensis (Sapindales: Rutaceae) essential oil and its major individual constituents against mosquitoes. J Med Entomol. 2013;50:1267-74. https://doi.org/10.1603/ME12177

Mathew J, Thoppil JE. Chemical composition and mosquito larvicidal activities of Salvia essential oils. Pharm Biol. 2011; 49:456-63. https://doi.org/10.3109/13880209.2010.523427

Pavela R. Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind Crops Prod. 2009;30:311-5. https://doi.org/10.1016/j.indcrop.2009.06.005

Aguiar RW, dos Santos SF, da Silva Morgado F, Ascencio SD, de Mendonça Lopes M, Viana KF, et al. Insecticidal and repellent activity of Siparuna guianensis Aubl.(Negramina) against Aedes aegypti and Culex quinquefasciatus. PloS One. 2015;10:e0116765. https://doi.org/10.1371/journal.pone. 0116765

Barbosa JD, Silva VB, Alves PB, Gumina G, Santos RL, Sousa DP, et al. Structure–activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag Sci. 2012;68:1478-83. https://doi.org/10.1002/ps.3331

Marques MM, Morais SM, Vieira ÍG, Vieira MG, Silva AR, De Almeida RR, et al. Larvicidal activity of Tagetes erecta against Aedes aegypti. J Am Mosq Control Assoc. 2011;27:156-8. https://doi.org/10.2987/10-6056.1

Ruiz C, Cachay M, Domínguez M, Velásquez C, Espinoza G, Ventosilla P, et al. Chemical composition, antioxidant and mosquito larvicidal activities of essential oils from Tagetes filifolia, Tagetes minuta and Tagetes elliptica from Perú. Planta Med. 2011;77:PE30. https://doi.org/10.1055/s-0031-1282361

Liu XC, Liu Q, Chen XB, Zhou L, Liu ZL. Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. Pest Manag Sci. 2015;71:1582-6. https://doi.org/10.1002/ps.3964

Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C. Comparative repellency of 38 essential oils against mosquito bites. Phytother Res. 2005;19:303-9. https://doi.org/10.1002/ptr.1637

Gillij YG, Gleiser RM, Zygadlo JA. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol. 2008;99:2507-15. https://doi.org/10.1016/j.biortech.2007.04.066

Moore SJ, Hill N, Ruiz C, Cameron MM. Field evaluation of traditionally used plant-based insect repellents and fumigants against the malaria vector Anopheles darlingi in Riberalta, Bolivian Amazon. J Med Entomol. 2007;44:624-30. https://doi.org/10.1093/jmedent/44.4.624

de Paula JP, Gomes-Carneiro M, Paumgartten FJ. Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil. J Ethnopharmacol. 2003;88:253-60. https://doi.org/10.1016/S0378-8741(03)00233-2

Jaenson TG, Pålsson K, Borg-Karlson AK. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J Med Entomol. 2006;43:113-9. https://doi.org/10.1093/jmedent/43.1.113

Phasomkusolsil S, Soonwera M. Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Asian Pac J Trop Biomed. 2011;1: S113-8. https://doi.org/10.1016/S2221-1691(11)60136-6

Amer A, Mehlhorn H. Repellency effect of forty-one essen-tial oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res. 2006;99:478-90. https://doi.org/10.1007/ s00436-006-0184-1

Waliwitiya R, Kennedy CJ, Lowenberger CA. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag Sci. 2009; 65:241-8. https://doi.org/10.1002/ps.1675

Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol Res. 2015;114:3835-53. https://doi.org/10.1007/s00436-015-4614-9

Sousa RMO, Rosa JS, Silva CA, Almeida MTM, Novo MT, Cunha AC, et al. Larvicidal, molluscicidal and nematicidal activities of essential oils and compounds from Foeniculum vulgare. J Pest Sci. 2015;88:413-26. https://doi.org/10.1007/s10340-014-0628-9

Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind Crops Prod. 2015;76: 174-187. https://doi.org/10.1016/j.indcrop.2015. 06.050

Rana IS, Rana AS. Efficacy of essential oils of aromatic plants as larvicide for the management of filarial vector Culex quinquefasciatus Say (Diptera: Culicidae) with special reference to Foeniculum vulgare. Asian Pac J Trop Dis. 2012;2:184-9. https://doi.org/10.1016/S2222-1808(12)60044-9

Santos SR, Silva VB, Melo MA, Barbosa JD, Santos RL, de Sousa DP, et al. Toxic effects on and structure-toxicity relationships of phenylpropanoids, terpenes, and related compounds in Aedes aegypti larvae. Vector Borne Zoonotic Dis. 2010;10:1049-54. https://doi.org/10.1089/vbz.2009.0158

Gokulakrishnan J, Kuppusamy E, Shanmugam D, Appavu A, Kaliyamoorthi K. Pupicidal and repellent activi-ties of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes. Asian Pac J Trop Dis. 2013;3:26-31. https://doi.org/10.1016/S2222-1808(13)60006-7

Ali A, Tabanca N, Ozek G, Ozek T, Aytac Z, Bernier UR, et al. Essential oils of Echinophora lamondiana (apiales: Umbelliferae): A relationship between chemical profile and biting deterrence and larvicidal activity against mosquitoes (Diptera: Culicidae). J Med Entomol. 2015;52:93-100. https://doi.org/10.1093/jme/tju014

Dória GA, Silva WJ, Carvalho GA, Alves PB, Cavalcanti SC. A study of the larvicidal activity of two Croton species from northeastern Brazil against Aedes aegypti. Pharm Biol. 2010;48:615-20. https://doi.org/10. 3109/13880200903222952

Radwan MA, El-Zemity SR, Mohamed SA, Sherby SM. Larvicidal activity of some essential oils, monoterpenoids and their corresponding N-metil carbamate derivatives against Culex pipiens (Diptera: Culicidae). Int J Trop Ins Sci. 2008;28:61-8. https://doi.org/10.1017/S1742758408962366

Cheng SS, Chua MT, Chang EH, Huang CG, Chen WJ, Chang ST. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresource Technol. 2009;100:465-70. https://doi.org/10.1016/j.biortech.2007.11.060

Lucía A, Zerba E, Masuh H. Knockdown and larvicidal activity of six monoterpenes against Aedes aegypti (Diptera: Culicidae) and their structure-activity relation-ships. Parasitol Res. 2013;112:4267-72. https://doi.org/10. 1007/s00436-013-3618-6

Perumalsamy H, Kim NJ, Ahn, AJ. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). J Med Entomol. 2009;46:1420-3. https://doi.org/10.1603/033.046.0624

Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW. Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2012;110:2125-30. https://doi.org/10.1007/s00436-011-2738-0

Kaufman PE, Mann RS, Butler JF. Evaluation of semio-chemical toxicity to Aedes aegypti, Ae. albopictus and Anopheles quadrimaculatus (Diptera: Culicidae). Pest Manag Sci. 2010;66:497-504. https://doi.org/10.1002/ps. 1899

Liu XC, Dong HW, Zhou L, Du SS, Liu ZL. Essential oil composition and larvicidal activity of Toddalia asiatica roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2013;112:1197-203. https://doi.org/10.1007/s00436-012-3251-9

Ali A, Murphy CC, Demirci B, Wedge DE, Sampson BJ, Khan IA, et al. Insecticidal and biting deterrent activity of rose-scented geranium (Pelargonium spp.) essential oils and individual compounds against Stephanitis pyrioides and Aedes aegypti. Pest Manag Sci. 2013;69:1385-92. https://doi.org/10.1002/ps.3518

Lahlou M. Methods to study the phytochemistry and bioactivity of essential oils. Phytotherapy Res. 2004;18: 435-48. https://doi.org/10.1002/ptr.1465

Shaalan EAS, Canyon D, Younes MW, Abdel-Wahab H, Mansour AH. A review of botanical phytochemicals with mosquitocidal potential. Environ Int. 2005;31:1149-66. https://doi.org/10.1016/j.envint.2005.03.003

Pavela R. Acute and synergistic effects of some monoter-penoid essential oil compounds on the house fly (Musca domestica L.). J Essent Oil Bear Pl. 2008;11:451-9. https://doi.org/10.1080/0972060X.2008.10643653

Koul O, Singh R, Kaur B, Kanda D. Comparative study on the behavioral response and acute toxicity of some essential oil compounds and their binary mixtures to larvae of Helicoverpa armigera, Spodoptera litura and Chilo partellus. Ind Crops Prod. 2013;49:428-36. https://doi.org/10.1016/j.indcrop.2013.05.032

Hummelbrunner LA, Isman MB. Acute, sublethal, anti-feedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agricul Food Chem. 2001;49:715-20. https://doi.org/10.1021/jf000749t

Liu CH, Mishra AK, Tan RX, Tang C, Yang H, Shen YF. Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum alcanfora and their effect on seed germination of wheat and broad bean. Bioresour Technol. 2006;97:1969-73. https://doi.org/10. 1016/j.biortech.2005.09.002

Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag Sci. 2002;58:1101-6. https://doi.org/10.1002/ps.548

Wang Z, Kim JR, Wang M, Shu S, Ahn YJ. Larvicidal activity of Cnidium monnieri fruit coumarins and structurally related compounds against insecticide-susceptible and insecticide-resistant Culex pipiens pallens and Aedes aegypti. Pest Manag Sci. 2012;68:1041-7. https://doi.org/10.1002/ps.3265

Scotti L, Scotti MT, Silva VB, Santos SR, Cavalcanti SC, Mendonca FJ Jr. Chemometric studies on potential larvicidal compounds against Aedes aegypti. Med Chem. 2014;10:201-10. https://doi.org/10.2174/15734064113099990005

Lee S, Peterson CJ, Coats JR. Fumigation toxicity of monoterpenoids to several stored product insects. J Stored Prod Res. 2003;39:77-85. https://doi.org/10.1016/S0022-474X(02)00020-6

García M, Donadel OJ, Ardanaz CE, Tonn CE, Sosa ME. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manag Sci. 2005;61:612-8. https://doi.org/10.1002/ps.1028

López Ó, Fernández-Bolaños JG, Gil MV. New trends in pest control: The search for greener insecticides. Green Chem. 2005;7:431-42. https://doi.org/10.1039/B500733J

Santos SR, Melo MA, Cardoso AV, Santos RL, de Sousa DP, Cavalcanti SC. Structure–activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere. 2011;84:150-3. https://doi.org/10.1016/j.chemosphere.2011.02.018

Abdelgaleil SA, Mohamed MI, Badawy ME, El-arami SA. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J Chem Ecol. 2009;35:518-25. https://doi.org/10.1007/s10886-009-9635-3

Andrade-Ochoa S, Nevárez-Moorillón GV, Sánchez-Torres LE, Villanueva-García M, Sánchez-Ramírez BE, Rodríguez-Valdez LM, et al. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Comp Alt Med. 2015;15:332. https://doi.org/10.1186/s12906-015-0858-2

Lomonaco D, Santiago GM, Ferreira YS, Arriaga ÂM, Mazzetto SE, Mele G, et al. Study of technical CNSL and its main components as new green larvicides. Green Chem. 2009;11:31-3. https://doi.org/10.1039/B811504D

Wang Z, Song J, Chen J, Song Z, Shang S, Jiang Z, et al. QSAR study of mosquito repellents from terpenoid with a six-member-ring. Bioorg Med Chem Lett. 2008;18:2854-9. https://doi.org/10.1016/j.bmcl.2008.03.091

Begum NA, Roy N, Laskar RA, Roy K. Mosquito larvicidal studies of some chalcone analogues and their derived products: Structure–activity relationship analysis. Med Chem Res. 2011;20:184-91. https://doi.org/10.1007/s00044-010-9305-6

Ma D, Bhattacharjee AK, Gupta RK, Karle JM. Predicting mosquito repellent potency of N, N-diethyl-m-toluamide (DEET) analogs from molecular electronic properties. Am J Trop Med Hyg. 1999;60:1-6.

Paluch G, Grodnitzky J, Bartholomay L, Coats J. Quantitative structure−activity relationship of botanical sesquiterpenes: Spatial and contact repellency to the yellow fever mosquito, Aedes aegypti. J Agric Food Chem. 2009;57:7618-25. https://doi.org/10.1021/jf900964e

Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection. 2010;29:913-20. https://doi.org/10.1016/j.cropro.2010.05.008

Isman MB. Plant essential oils for pest and disease management. Crop Protection. 2000;19:603-8. https://doi.org/10.1016/j.cropro.2010.05.008

Zarrad K, Hamouda AB, Chaieb I, Laarif A, Jemâa JM. Chemical composition, fumigant and anti-acetyl-cholinesterase activity of the Tunisian Citrus aurantium L. essential oils. Ind Crops Prod. 2015;76:121-7. https://doi.org/10.1016/j.indcrop.2015.06.039

Houghton PJ, Ren Y, Howes MJ. Acetylcholinesterase inhibitors from plants and fungi. Natural Prod Rep. 2006;23:181-99. https://doi.org/10.1039/B508966M

Jyotshna, Srivastava N, Singh B, Chanda D, Shanker K. Chemical composition and acetylcholinesterase inhibitory activity of Artemisia maderaspatana essential oil. Pharm Biol. 2015;53:1677-83. https://doi.org/10.3109/13880209.2014.1001405

Enan EE. Insecticidal activity of essential oils: Octopa-minergic sites of action. Comp Biochem Physiol C Toxicol Pharmacol. 2001;130:325e337. https://doi.org/10.1016/S1532-0456(01)00255-1

Coats R, Karr LL, Drewes CD. Toxicity and neurotoxic effects of monoterpenoids in insects and earthworms. En: Hedin P, editor. Natural occurring pest bioregulators. Washington, D.C.: American Chemical Society; 1991. p. 305-16.

Ryan MF, Byrne O. Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol.1988;14:1965-75. https://doi.org/10.1007/BF01013489

Praveena A, Sanjayan KP. Inhibition of acetylcholin-esterase in three insects of economic importance by linalol, a monoterpene phytochemical. En: Ambrose DP, editor. Insect pest management, a current scenario, entomology research unit. Palayamkottai, India: St. Xavier’s College; 2011. p. 340-5.

Felipe CF, Fonsêca KS, dos Reis Barbosa AL, Bezerra JN, Neto MA, de França Fonteles MM, et al. Alterations in behavior and memory induced by the essential oil of Zingiber officinale Roscoe (ginger) in mice are cholinergic-dependent. J Med Plants Res. 2008;2:163-70.

Yeom HJ, Kang JS, Kim GH, Park IK. Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). J Agric Food Chem. 2012;60:7194-203. https://doi.org/10.1021/jf505927n

Kim SW, Kang J, Park IK. Fumigant toxicity of Apiaceae essential oils and their constituents against Sitophilus oryzae and their acetylcholinesterase inhibitory activity. J Asia-Pacific Entomol. 2013;16:443-8. https://doi.org/10. 1016/j.aspen.2013.07.002

Seo SM, Jung CS, Kang J, Lee HR, Kim SW, Hyun J, et al. Larvicidal and acetylcholine esterase inhibitory activity of apiaceae plant essential oils and their constituents against Aedes albopictus, and formulation development. J Agric Food Chem. 2015;63:9977-86. https://doi.org/10. 1021/acs.jafc.5b03586

Yeom HJ, Jung CS, Kang J, Kim J, Lee JH, Kim DS, et al. Insecticidal and acetylcholine esterase inhibition activity of asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica). J Agric Food Chem. 2015;63:2241-8. https://doi.org/10.1021/jf505927n

Khanikor B, Parida P, Yadav RNS, Bora D. Comparative mode of action of some terpene compounds against octopamine receptor and acetyl cholinesterase of mosquito and human system by the help of homology modeling and docking studies. J Appl Pharm Sci. 2013;3:6-12. https://doi.org/10.7324/JAPS.2013.30202

Unnithan AR. In vitro sensitivity assay of Lantana camara against Aedes agypti with supplementary facts from GC MS and in silico analysis. J Biomed Pharm Sci. 2015;4:5-9.

Enan EE. Molecular and pharmacological analysis of an octopamina receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol. 2005;59:161-71. https://doi.org/10.1002/arch.20076

Enan EE. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem Mol Biol. 2005;35:309-21. https://doi.org/10.1016/j. ibmb.2004.12.007

Priestley CM, Williamson EM, Wafford KA, Sattelle DB. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA A receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol. 2003;140:1363-72. https://doi.org/10.1038/sj.bjp.0705542

Bloomquist JR, Boina DR, Chow E, Carlier PR, Reina M, González-Coloma A. Mode of action of the plant-derived silphinenes on insect and mammalian GABA A receptor/chloride channel complex. Pest Biochem Physiol. 2008;91:17-23. https://doi.org/10.1016/j.pestbp. 2007.12.002

Höld KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE. α-Thujone (the active component of absinthe): γ-Aminobutyric acid type A receptor modulation and metabolic detoxification. Proc Natl Acad Sci. 2000;97:3826-31. https://doi.org/10.1073/pnas.070042397

Kumar PS, Chezhian A, Raja PS, Sathiyapriya J. Computational selections of terpenes present in the plant Calotropis gigantea as mosquito larvicide’s by blocking the sterol carrying protein, AeSCP-2. Bangladesh J Pharmacol. 2012;7:1-5. https://doi.org/10.3329/bjp.v7i1.8414

Publicado
2017-03-29
Cómo citar
Ochoa, S., Sánchez-Torres, L. E., Nevárez-Moorillón, G. V., Camacho, A. D., & Nogueda-Torres, B. (2017). Aceites esenciales y sus constituyentes como una alternativa en el control de mosquitos vectores de enfermedades. Biomédica, 37, 224-243. https://doi.org/10.7705/biomedica.v37i0.3475