DOI: https://doi.org/10.7705/biomedica.v38i0.3689

IgY antialérgenos específicos del grupo 1 de ácaros del polvo doméstico inducidos por oligopéptidos sintéticos no glicosilados

Eduardo Egea, Dary Mendoza, Gloria Garavito, Ángela Espejo, Lina Maria Lizaraso, Elkin Navarro, Luis Alejandro Barrera

Resumen


Introducción. La obtención de anticuerpos específicos capaces de detectar alérgenos del grupo 1 de ácaros del polvo doméstico representa una estrategia potencial de salud pública para reducir la exposición y la sintomatología clínica asociada con el asma y la rinitis alérgica.
Objetivo. Producir y purificar anticuerpos aviares antialérgenos específicos del grupo 1 de los ácaros Dermatophagoides sp. y Blomia tropicalis utilizando la tecnología IgY.
Materiales y métodos. Se diseñaron y sintetizaron oligopéptidos que evidenciaran epítopes inmunogénicos de los alérgenos Der p1, Der f1 y Blo t1 empleados posteriormente para producir anticuerpos IgY policlonales en gallinas Hy Line Brown. Las IgY presentes en las yemas de los huevos se purificaron mediante cromatografía tiofílica. Su inmunorreactividad y especificidad se determinaron mediante un inmunoensayo ELISA indirecto y Dot Blot.
Resultados. Se obtuvo una reactividad elevada de las IgY contra epítopes de alérgenos presentes en extractos de cuerpo entero de D. farinae, D. pteronyssinus y B. tropicalis. Los niveles más altos de IgY se produjeron entre los días 32 y 40 de inmunización. Los anticuerpos mostraron mayor inmunorreactividad y especificidad en el reconocimiento de proteínas de D. farinae, con un límite de detección mayor de 0,03 μg de proteína total del ácaro bajo las condiciones experimentales analizadas. Las IgY purificadas no mostraron reactividad significativa frente al extracto de Periplaneta americana.
Conclusión. La tecnología IgY permitió la producción de anticuerpos específicos contra alérgenos del grupo 1 de los ácaros del polvo al utilizar oligopéptidos sintéticos no glicosilados. Hasta donde se sabe, esta es la primera vez que se usan estos reactivos inmunológicos para la detección de ácaros de importancia médica.


Palabras clave


alérgenos; anticuerpos, ácaros, oligopéptidos, yema de huevo; Pyroglyphidae

Texto completo:

PDF HTML

Referencias


1. Goldman RD. Antibodies: Indispensable tools for biomedical research. Trends Biochem Sci. 2000;25:593-5. https://doi.org/10.1016/S0968-0004(00)01725-4
2. Bradbury A, Plückthun A. Reproducibility: Standardized antibodies used in research. Nature. 2015;518:27-9. https://doi.org/10.1038/518027a
3. Peng J, Song S, Xu L, Ma W, Liu L, Kuang H, et al. Development of a Monoclonal Antibody-Based Sandwich ELISA for Peanut Allergen Ara h 1 in Food. Int J Environ Res Public Health. 2013;10:2897-905. https://doi.org/10.3390/ijerph10072897
4. Sookrung N, Khetsuphan T, Chaisri U, Indrawattana N, Reamtong O, Chaicumpa W, et al. Specific B-cell epitope of per a 1: A major allergen of American Cockroach (Periplaneta americana) and anatomical localization. Allergy Asthma Immunol Res. 2014;6:325-32. https://doi.org/10.4168/aair.2014.6.4.325
5. Even MS, Sandusky CB, Barnard ND. Serum-free hybridoma culture: Ethical, scientific and safety considerations. Trends Biotechnol. 2006;24:105-8. https://doi.org/10.1016/j.tibtech.2006.01.001
6. Hanly WC, Artwohl JE, Bennett BT. Review of polyclonal antibody production procedures in mammals and poultry. ILAR J. 1995;37:93-118. https://doi.org/10.1093/ilar.37.3.93
7. Leenaars M, Hendriksen CF. Critical steps in the production of polyclonal and monoclonal antibodies: Evaluation and recommendations. ILAR J. 2005;46:269-79. https://doi.org/10.1093/ilar.46.3.269
8. Thompson MK, Fridy PC, Keegan S, Chait BT, Fenyö D, Rout MP. Optimizing selection of large animals for antibody production by screening immune response to standard vaccines. J Immunol Methods. 2016;430:56-60. https://doi.org/10.1016/j.jim.2016.01.006
9. Jain E, Kumar A. Upstream processes in antibody production: Evaluation of critical parameters. Biotechnol Adv. 2008;26:46-72. https://doi.org/10.1016/j.biotechadv.2007.09.004
10. Joint Working Group on Refinement. Removal of blood from laboratory mammals and birds. Lab Anim. 1993;27:1-22. https://doi.org/10.1258/002367793781082412
11. Chacana PA, Terzolo HR, Gutiérrez Calzado E, Schade R. Tecnología IgY o aplicaciones de los anticuerpos de yema de huevo de gallina. Rev Med Vet. 2004;85:179-89.
12. Svendsen Bollen L, Crowley A, Stodulski G, Hau J. Antibody production in rabbits and chickens immunized with human IgG A comparison of titre and avidity development in rabbit serum, chicken serum and egg yolk using three different adjuvants. J Immunol Methods. 1996;191:113-20.
https://doi.org/10.1016/0022-1759(96)00010-5
13. Malmarugan S, Raman M, Jaisree S, Elanthalir P. Egg immunoglobulins - an alternative source of antibody for diagnosis of infectious bursal disease. Veterinarski Arhiv. 2005;75:49-56.
14. Jensenius JC, Andersen I, Hau J, Crone M, Koch C. Eggs: Conveniently packaged antibodies. Methods for purification of yolk IgG. J Immunol Methods. 1981;46:63-8.
https://doi.org/10.1016/0022-1759(81)90333-1
15. Warr GW, Magor KE, Higgins DA. IgY: Clues to the origins of modern antibodies. Immunol Today. 1995;16:392-8. https://doi.org/10.1016/0167-5699(95)80008-5
16. Iqbal A, Ateeq N. Effect of processing on the detectability of peanut protein by ELISA. Food Chem. 2013;141:1651-4. https://doi.org/10.1016/j.foodchem.2013.04.102
17. Drs E, Baumgartner S, Bremer M, Kemmers-Voncken A, Smits N, Haasnoot W, et al. Detection of hidden hazelnut protein in food by IgY-based indirect competitive enzymeimmunoassay. Anal Chim Acta. 2004;520:223-8. https://doi.org/10.1016/j.aca.2004.04.054
18. Blais BW, Gaudreault M, Phillippe LM. Multiplex enzyme immunoassay system for the simultaneous detection of multiple allergens in foods. Food Control. 2003;14:43-7. https://doi.org/10.1016/S0956-7135(02)00053-1
19. Finlay WJ, deVore NC, Dobrovolskaia EN, Gam A, Goodyear CS, Slater JE. Exploiting the avian immunoglobulin system to simplify the generation of recombinant antibodies to allergenic proteins. Clin Exp Allergy. 2005;35:1040-8. https://doi.org/10.1111/j.1365-2222.2005.02307.x
20. de Vore N, Finlay W, Dobrovolskia E, Gam A, Slater J. Cloning and analysis of mono-specific scFv fragments from chicken to allergenic proteins of Periplaneta americana (American cockroach). J Allergy Clin Immunol. 2004;113:S297. https://doi.org/10.1016/j.jaci.2004.01.550
21. Andiappan AK, Puan KJ, Lee B, Nardin A, Poidinger M, Connolly J, et al. Allergic airway diseases in a tropical urban environment are driven by dominant mono-specific sensitization against house dust mites. Allergy. 2014;69:501-9. https://doi.org/10.1111/all.12364
22. Tovey ER, Chapman MD, Platts-Mills TA. Mite faeces are a major source of house dust allergens. Nature. 1981;289:592-3.
23. Lee KE, Han BK, Han JY, Hong JY, Kim MN, Heo WI, et al. Production of egg yolk antibodies specific to house dust mite proteins. Yonsei Med J. 2014;55:999-1004. https://doi.org/10.3349/ymj.2014.55.4.999
24. Ruan GP, Ma L, Meng XJ, Meng MJ, Wang XN, Lin Y, et al. Quantification of antibody (IgY) titers in hen eggs following immunization and their use in detecting cell surface molecules on nitrocellulose membranes. J Immunoassay Immunochem. 2007;28:35-45. https://doi.org/10.1080/15321810601026083
25. Sosa AC, Espejo AJ, Rodríguez EA, Lizaraso LM, Rojas A, Guevara J, et al. Development of a sandwich enzyme linked immunosorbent assay (ELISA) for the quantification of iduronate-2-sulfate sulfatase. J Immunol Methods. 2011;368:64-70. https://doi.org/10.1016/j.jim.2011.03.004
26. Mendoza DL, Ruiz T, Lagares A, Garavito G, Egea E. Caracterización de la actividad alergénica y enzimática de extractos somáticos producidos a partir de cultivos in vitro del ácaro Dermatophagoides farinae. Salud Uninorte. 2011;27:11-21.
27. Hansen P, Scoble JA, Hanson B, Hoogenraad NJ. Isolation and purification of immunoglobulins from chicken eggs using thiophilic interaction chromatography. J Immunol Methods. 1998;215:1-7. https://doi.org/10.1016/S0022-1759(98)00050-7
28. Sapan CV, Lundblad RL, Price NC. Colorimetric protein assay techniques. Review. Biotechnol Appl Biochem. 1999;29:99-108. https://doi.org/10.1111/j.1470-8744.1999.tb00538.x
29. Gough L, Schulz O, Sewell HF, Shakib F. The cysteine protease activity of the major dust mite allergen der P 1 selectively enhances the immunoglobulin E antibody response. J Exp Med.1999;190:1897-902.
30. Chruszcz M, Pomés A, Glesner J, Vailes LD, Osinski T, Porebski PJ, et al. Molecular determinants for antibody binding on group 1 house dust mite allergens. J Biol Chem. 2012;287:7388-98. https://doi.org/10.1074/jbc.M111.311159
31. Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills EN. Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: An in silico analysis. J Allergy Clin Immunol. 2005;115:163-70. https://doi.org/10.1016/j.jaci.2004.10.026
32. Sharma V, Singh BP, Gaur SN, Pasha S, Arora N. Bioinformatics and immunologic investigation on B and T cell epitopes of Cur l 3, a major allergen of Curvularia lunata. J Proteome Res. 2009;8:2650-5. https://doi.org/10.1021/pr800784q
33. Brusic V, Petrovsky N, Gendel SM, Millot M, Gigonzac O, Stelman SJ. Computational tools for the study of allergens. Allergy. 2003;58:1083-92. https://doi.org/10.1034/j.1398-9995.2003.00224.x
34. Moisa AA, Kolesanova EF. Synthetic Peptide Vaccines. In: Priti R, editor. Insight and Control of Infectious Disease in Global Scenario. InTech Publications; 2012. https://doi.org/10.5772/33496
35. Chruszcz M, Chapman MD, Vailes LD, Stura EA, Saint-Remy JM, Minor W, et al. Crystal structures of mite allergens Der f 1 and Der p 1 reveal differences in surfaceexposed residues that may influence antibody binding. J Mol Biol. 2009;386:520-30. https://doi.org/10.1016/j.jmb.2008.12.049
36. Cheong N, Soon SC, Ramos JD, Kuo IC, Kolatkar PR, Lee BW, et al. Lack of human IgE cross-reactivity between mite allergens Blo t 1 and Der p 1. Allergy. 2003;58:912-20. https://doi.org/10.1034/j.1398-9995.2003.00215.x
37. Arruda LK, Chapman MD. The role of cockroach allergens in asthma. Curr Opin Pulm Med. 2001;7:14-9.
38. Sun BQ, Lai XX, Gjesing B, Spangfort MD, Zhong NS. Prevalence of sensitivity to cockroach allergens and IgE cross reactivity between cockroach and house dust mite allergens in Chinese patients with allergic rhinitis and asthma. Chin Med J (Engl). 2010;123:3540-4.
39. Chien TI, Chen YG, Chiang BL. Preparation of Der p 1 specific monoclonal antibodies and use in a two-site-ELISA to detect Der p 1 allergen. J Microbiol Immunol Infect. 2000;33:87-92.
40. Ramos JD, Cheong N, Teo AS, Kuo IC, Lee BW, Chua KY. Production of monoclonal antibodies for immunoaffinity purification and quantitation of Blo t 1 allergen in mite and dust extracts. Clin Exp Allergy. 2004;34:604-10. https://doi.org/10.1111/j.1365-2222.2004.1922.x
41. Sookrung N, Kamlanghan T, Indrawattana N, Tungtrongchitr A, Tantilipikorn P, Bunnag C, et al. Quantification of Der f 1 in houses of patients allergic to house dust mite, Dermatophagoides farinae, using a locally produced detection reagents. Asian Pac J Allergy Immunol. 2011;29:78-85.
42. Sander I, Zahradnik E, Kraus G, Mayer S, Neumann HD, Fleischer C, et al. Domestic mite antigens in floor and airborne dust at workplaces in comparison to living areas: a new immunoassay to assess personal airborne allergen exposure. PLoS One. 2012;7:e52981. https://doi.org/10.1371/journal.pone.0052981
43. Schade R, Calzado EG, Sarmiento R, Chacana PA, Porankiewicz-Asplund J, Terzolo HR. Chicken egg yolk antibodies (IgY-technology): A review of progress in production and use in research and human and veterinary medicine. Altern Lab Anim. 2005;33:129-54.


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Revista Biomédica -  https://doi.org/10.7705/issn.0120-4157
ISSN 0120-4157

Instituto Nacional de Salud
INSTITUTO NACIONAL DE SALUD
Avenida Calle 26 No. 51-20
Apartado aéreo 80334 y 80080
Bogotá, D.C., Colombia, S.A.
Teléfono: 05712207700 Ext. 1386
Correo electrónico: biomedica@ins.gov.co