DOI: https://doi.org/10.7705/biomedica.v38i0.3728

Variabilidad genética de Aedes aegypti en el departamento de Sucre, Colombia, mediante el análisis de la secuencia de nucleótidos del gen mitocondrial ND4

Maria Claudia Atencia, María de Jesús Pérez, Sandy Milena Caldera, María Cristina Jaramillo, Eduar Elias Bejarano

Resumen


Introducción. Aedes aegypti es la especie de mosquito de mayor relevancia en América por transmitir los virus del dengue, del Zika, del chikungunya y de la fiebre amarilla. Tanto factores ecológicos como el control químico, pueden influir en la composición genética de las poblaciones de Ae. aegypti, por lo cual es necesaria su caracterización.
Objetivo. Determinar la variabilidad genética de las poblaciones de Ae. aegypti en cuatro municipios del departamento de Sucre, Colombia.
Materiales y métodos. Larvas de Ae. aegypti, recolectadas en los municipios de Sincelejo, Sampués, Corozal y Guaranda del departamento de Sucre, fueron criadas en laboratorio hasta el estado adulto. Como marcador genético, se utilizó un segmento del gen mitocondrial ND4, que codifica para la subunidad 4 de la enzima NADH-deshidrogenasa. El análisis genético incluyó la estimación de parámetros de diversidad de nucleótidos, haplotipos, de estructura genética y de flujo de genes.
Resultados. Se obtuvieron 108 secuencias parciales de 357 nucleótidos y cuatro haplotipos de nucleótidos del gen ND4 de Ae. aegypti. Se encontró una diferenciación genética significativamente alta entre las poblaciones de Sampués y Guaranda mediante el índice de fijación (FST=0,59467), las de Sincelejo y Sampués (FST= 0,25637), y las de Corozal y Guaranda (FST= 0,22237). Se evidenció un gran flujo de genes (Nm=infinito) entre las poblaciones de Sincelejo y Corozal.
Conclusión. Existen diferencias genéticas entre las poblaciones del mosquito Ae. aegypti de los municipios del departamento de Sucre. Se registra la presencia de un nuevo haplotipo del gen mitocondrial ND4 de Ae. aegypti en Colombia, el cual fue detectado en el municipio de Sincelejo.


Palabras clave


Aedes/genética; ADN mitocondrial; dengue; Colombia

Texto completo:

PDF HTML

Referencias


1. Organización Mundial de la Salud. Dengue: guías para diagnóstico, tratamiento, prevención y control. OMS; 2009. Fecha de consulta: 12 de septiembre de 2015. Disponible en: http://apps.who.int/iris/bitstream/10665/44504/1/9789995479213_spa.pdf?ua=1
2. Aitken TH, Downs WG, Shope RE. Aedes aegypti strain fitness for yellow fever virus transmission. Am J Trop Med Hyg. 1977;26:985-9. https://doi.org/10.4269/ajtmh.1977.26.985
3. Bennett KE, Olson KE, Muñoz M, Fernández-Salas I, Farfán-Ale JA, Higgs S, et al. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg. 2002;67:85-92. https://doi.org/10.4269/ajtmh.2002.67.85
4. World Health Organization. Guidelines for prevention and control of chikungunya fever. World Health Organization. Fecha de consulta: 13 de mayo de 2016. Disponible en: http://www.wpro.who.int/mvp/topics/ntd/Chikungunya_WHO_SEARO.pdf.
5. Bosio CF, Beaty BJ, Black WC. Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti. Am J Trop Med Hyg. 1998;59:965-70. https://doi.org/10.4269/ajtmh.1998.59.965
6. Anderson JR, Rico-Hesse R. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg. 2006;75:886-92. https://doi.org/10.4269/ajtmh.2006.75.886
7. Quintero D, Osorio J, Martínez M. Competencia vectorial: consideraciones entomológicas y su influencia sobre la epidemiología del Dengue. Iatreia. 2010;23:146-56.
8. Lozano S, Fernández I, Muñoz M, García J, Olson K, Beaty B, et al. The neovolcanic axis is a barrier to gene flow among Aedes aegypti populations in mexico that differ in vector competence for dengue 2 virus. PLoS Negl Trop Dis. 2009;3:e468. https://doi.org/10.1371/journal.pntd.0000468
9. Ravela S, Montenyb N, Velasco D, Verdugob J, Cunya G. A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellite and AFLP markers. Acta Trop. 2001;78:241-50. https://doi.org/10.1016/S0001-706X(01)00083-3
10. Yan G, Chadee D, Severson D. Evidence for genetic hitchhiking effect associated with insecticide resistance in Aedes aegypti. Genetics. 1998;148:793-800.
11. Gorrochotegui-Escalante N, Gómez-Machorro C, Lozano-Fuentes S, Fernández-Salas L, Muñoz M, Farfán-Ale JA, et al. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg. 2002;66:213-22. https://doi.org/10.4269/ajtmh.2002.66.213
12. Ocampo C, Wesson D. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia. Am J Trop Med Hyg. 2004;71:506-13. https://doi.org/10.4269/ajtmh.2004.71.506
13. Julio NB, Chiappero MB, Rossi HJ, Rondan-Dueñas JC, Gardenal CN. Genetic structure of Aedes aegypti in the city of Córdoba (Argentina), a recently reinfested area. Mem Inst Oswaldo Cruz. 2009;104:626-31. http://dx.doi.org/10.1590/S0074-02762009000400016
14. Sylla M, Bosio C, Urdaneta-Márquez L, Ndiaye M, Black WC. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal. PLoS Negl Trop Dis. 2009;3:e408. https://doi.org/10.1371/journal.pntd.0000408
15. Da Costa-Ribeiro M, Lourenço-de-Oliveira R, Failloux A. Low gene flow of Aedes aegypti between dengue-endemic and dengue-free areas in Southeastern and Southern Brazil. Am J Trop Med Hyg. 2007;77:303-9. https://doi.org/10.4269/ajtmh.2007.77.303
16. Leiva N, Cáceres O. Variabilidad genética de Aedes aegypti en algunas áreas del Perú usando Single Stranded Conformational Polymorphism (SSCP). Rev Peru Med Exp Salud Pública. 2004;21:158-66.
17. Da Costa-Ribeiro M, Lourenço-de-Oliveira R, Failloux A. Higher genetic variation estimated by microsatellites compared to isoenzyme markers in Aedes aegypti from Rio de Janeiro. Mem Inst Oswaldo Cruz. 2006;101:917-21. http://dx.doi.org/10.1590/S0074-02762006000800015.
18. Paupy C, Le Goff G, Brengues C, Guerra M, Revollo J, Barja Z, et al. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infect Genet Evol. 2012;12(6):1260–9. https://doi.org/10.1016/j.meegid.2012.04.012
19. Olanratmanee P, Kittayapong P, Chansang C, Hoffmann AA, Weeks AR, Endersby NM. Population genetic structure of Aedes (Stegomyia) aegypti (L.) at a micro-spatial scale in Thailand: Implications for a dengue suppression strategy. PLoS Negl Trop Dis. 2013;7:e1913. https://doi.org/10.1371/journal.pntd.0001913
20. Costa-da-Silva A, Capurro M, Bracco JE. Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Mem Inst Oswaldo Cruz. 2005:100:639-44. http://dx.doi.org/10.1590/S0074-02762005000600007
21. Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW. Genetic structure of Aedes aegypti populations in Thailand using Mitochondrial DNA. Am J Trop Med Hyg. 2005;72:434-42. https://doi.org/10.4269/ajtmh.2005.72.434
22. Bracco J, Capurro M, Lourenço-de-Oliveira R, Mureb-Sallum M. Genetic variability of Aedes aegypti in the Américas using o mitochondrial gene: Evidence of multiple introductions. Mem Inst Oswaldo Cruz. 2007;102:573-80. http://dx.doi.org/10.1590/S0074-02762007005000062
23. Paduan K, Ribolla P. Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J Med Entomol. 2008;45:59-67. https://doi.org/10.1093/jmedent/45.1.59
24. Lima R, Scarpassa V. Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences. Genet Mol Biol. 2009;32:414-22. http://dx.doi.org/10.1590/S1415-47572009005000036
25. Caldera S, Jaramillo MC, Cochero S, Pérez-Doria A, Bejarano EE. Diferencias genéticas entre poblaciones de Aedes aegypti de municipios del Norte de Colombia, con baja y alta incidencia de dengue. Biomédica. 2013;33:89-98. http://dx.doi.org/10.7705/biomedica.v33i0.1573
26. Albrieu G, Gardenal N. Phylogeography of Aedes aegypti in Argentina: long-distance colonization and rapid restoration of fragmented relicts after a continental control campaign. Vector Borne Zoonotic Dis. 2012;12:254-61. https://doi.org/10.1089/vbz.2011.0696
27. Damal K, Murrell E, Juliano S, Conn J, Loew S. Phylogeography of Aedes aegypti (yellow fever mosquito) in South Mlorida: mtDNA evidence for human-aided dispersal. Am J Trop Med Hyg. 2013;89:482-88. https://doi.org/10.4269/ajtmh.13-0102
28. Scarpassa V, Bacry T, Cardoso R. Population genetics and phylogeography of Aedes aegypti (Diptera: Culicidae) from Brazil. Am J Trop Med Hyg. 2008;78:895–903. https://doi.org/10.4269/ajtmh.2008.78.895
29. Cadavid J, Rúa G, Campo O, Bedoya G, Rojas W. Cambios genéticos temporales y microgeográficos de Aedes aegypti en Medellín, Colombia. Biomédica. 2015;35:53-6. https://doi.org/10.7705/biomedica.v35i1.2343
30. Hoyos-López R, Pardo SR, Castaño JC, Gallego-Gómez JC. Código de barras para la tipificación de culícidos inmaduros de Armenia y Circasia (Quindío, Colombia). Rev Colomb Entomol. 2015;41:218-27. ISSN 0120-0488.
31. Rueda L. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue virus transmission. Zootaxa. 2004;589:1-60. http://dx.doi.org/10.11646/zootaxa.589.1.1
32. Atencia M, Pérez M, Jaramillo M, Caldera S, Bejarano E. Primer reporte de la mutación F1534C asociada con resistencia cruzada a DDT y piretroides en Aedes aegypti en Colombia. Biomédica. 2016;36:432-7. http://dx.doi.org/10.7705/biomedica.v36i3.2834
33. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731-739. https://doi.org/10.1093/molbev/msr121
34. Altschul S, Gish W, Miller W, Myers E, Lipman D. Blast BLAST. Basic local alignment search tool. J Mol Biol 1990; 215:403-10. https://doi.org/10.1016/S0022-2836(05)80360-2
35. Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451-2. https://doi.org/10.1093/bioinformatics/btp187
36. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics.1983;105:437-60.
37. Fu Y, Li W. Statistical tests of neutrality mutations. Genetics. 1993;133:693-709.
38. Fluxus Technology Ltd. NETWORK 4.6.1.1. Steiner (MP) algorithm developed by Tobias Polzin and Siavash Vahdati Daneshmand. Fecha de consulta: 20 de noviembre de
2013. Disponible en: http://www.fluxusengineering.com
39. Bandelt H, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
40. Excoffier L, Lischer H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564-67.
41. Mantel N. The detection of disease clustering and a geneized regression approach. Cancer Res. 1967;27:209-20.
42. Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics. 1997;145:1219-28.
43. Cavalcanti M. MANTEL v1.19. Centro de Ciências Biológicas, Universidade Santa Úrsula. 2008. Fecha de consulta: 15 de septiembre de 2017. Disponible en: http://life.bio.sunysb.edu/morph/morphmet/mantel32.exe
44. Jaimes J, Arboleda S, Triana O, Gómez A. Spatiotemporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia. PLoS Negl Trop Dis. 2015;9:e0003553. https://doi.org/10.1371/journal.pntd.0003553
45. Ministerio de Salud y Protección Social, República de Colombia. Situación actual de Dengue a semana 12 de 2013 periodo de análisis: 2008-2013. Fecha de consulta: 15 de septiembre de 2017. Disponible en: https://www.minsalud.gov.co/Documentos%20y%20Publicaciones/INFORME%20SITUACION%20DE%20DENGUE.pdf
46. Twerdochlib A, Dalla A, Leite S, Chitolina R, Westphal B, Navarro M. Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. Rev Bras Entomol. 2012;56:249-56. http://dx.doi.org/10.1590/S0085-56262012005000030
47. Brito R, Manfrin M, Sene F. Mitochondrial DNA phylogeography of Brazilian populations of Drosophila buzzatii. Genet Mol Biol. 2002;25:161-71. http://dx.doi.org/10.1590/S1415-47572002000200009
48. Iturbe U. Adaptaciones y adaptación biológica. Sesbe. 2010;5:5-12.
49. Wright S. Evolution and the genetics of population, variability within and among natural populations. Chicago: The University of Chicago Press; 1978. p. 4.
50. Wright S. The genetical structure of populations. Chicago: University of Chicago Press. Annals of Eugenics. 1951;15:323-54.
51. Nelson MJ. Aedes aegypti: Biología y ecología. Washington: Organización Panamericana de la Salud; 1986. p. 1-50


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Revista Biomédica -  https://doi.org/10.7705/issn.0120-4157
ISSN 0120-4157

Instituto Nacional de Salud
INSTITUTO NACIONAL DE SALUD
Avenida Calle 26 No. 51-20
Apartado aéreo 80334 y 80080
Bogotá, D.C., Colombia, S.A.
Teléfono: 05712207700 Ext. 1386
Correo electrónico: biomedica@ins.gov.co