El biomodelo porcino en la investigación médica traslacional: del biomodelo al humano en trasplante pulmonar

Liliana Fernández, Mauricio Velásquez, Luz Fernanda Sua, Indira Cujiño, Martha Giraldo, Diego Medina, Mauricio Burbano, Germán Torres, Carlos Munoz-Zuluaga, Leidys Gutiérrez-Martínez, .

Palabras clave: trasplante de pulmón, modelos animales, histología comparada, citometría de flujo, médula ósea

Resumen

Introducción. La anatomía humana y porcina son comparables. En consecuencia, el biomodelo porcino tiene el potencial de ser implementado para entrenar al profesional quirúrgico en áreas como el trasplante de órganos sólidos.
Objetivo. Describir los procedimientos y hallazgos obtenidos mediante experimentos de medicina respiratoria traslacional con biomodelos porcinos realizados en un laboratorio de experimentación animal, y hacer una revisión comparativa entre el pulmón humano y el porcino.
Materiales y métodos. El experimento se llevó a cabo en nueve cerdos de raza híbrida en un laboratorio de cirugía experimental. Se estudiaron la anatomía y la histología de las vías respiratorias mediante fibrobroncoscopia, biopsia bronquial y lavado broncoalveolar. El lavado broncoalveolar se estudió con citología en base líquida y se evaluó con las coloraciones de Papanicolau y hematoxilina y eosina. Se utilizaron técnicas de patología molecular, como inmunohistoquímica, citometría de flujo y microscopía electrónica. Los cerdos se sometieron a neumonectomía izquierda con posterior implante del injerto en otro cerdo experimental.
Resultados. Los estudios histopatológicos y moleculares evidenciaron un predominio de macrófagos alveolares (98 %) y linfocitos T (2 %) en el lavado broncoalveolar porcino. En los estudios del parénquima pulmonar porcino se encontró tejido linfoide hiperplásico asociado a las paredes bronquiales. La microscopía electrónica evidenció linfocitos T dentro del epitelio y el diámetro de las cilias porcinas fue similar al de las humanas.
Conclusiones. El biomodelo porcino es viable en la investigación traslacional para el entendimiento de la anatomía del sistema respiratorio y el entrenamiento en trasplante pulmonar. La implementación de este modelo experimental podría fortalecer los grupos que planean implementar un programa institucional de trasplante pulmonar en humanos.

Descargas

Los datos de descargas todavía no están disponibles.
  • Liliana Fernández Departamento de Medicina Interna, Servicio de Neumología, Fundación Valle del Lili, Cali, Colombia; Centro de investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Línea de Investigación Biomédica en Tórax, Fundación Valle del Lili, Cali, Colombia; Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
  • Mauricio Velásquez Línea de Investigación Biomédica en Tórax, Fundación Valle del Lili, Cali, Colombia; Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia; Unidad de Cirugía de Tórax, Fundación Valle del Lili, Cali, Colombia
  • Luz Fernanda Sua Centro de investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Línea de Investigación Biomédica en Tórax, Fundación Valle del Lili, Cali, Colombia; Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia; Departamento de Patología y Medicina de Laboratorio, Fundación Valle del Lili, Cali, Colombia
  • Indira Cujiño Línea de Investigación Biomédica en Tórax, Fundación Valle del Lili, Cali, Colombia; Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia; Servicio de Anestesiología, Fundación Valle del Lili, Cali, Colombia
  • Martha Giraldo Servicio de Anestesiología, Fundación Valle del Lili, Cali, Colombia
  • Diego Medina Unidad de Cirugía Cardiovascular, Fundación Valle del Lili, Cali, Colombia
  • Mauricio Burbano Departamento de Patología y Medicina de Laboratorio, Fundación Valle del Lili, Cali, Colombia
  • Germán Torres Departamento de Patología y Medicina de Laboratorio, Fundación Valle del Lili, Cali, Colombia
  • Carlos Munoz-Zuluaga Centro de investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Línea de Investigación Biomédica en Tórax, Fundación Valle del Lili, Cali, Colombia; Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
  • Leidys Gutiérrez-Martínez Centro de investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Línea de Investigación Biomédica en Tórax, Fundación Valle del Lili, Cali, Colombia; Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia

Referencias bibliográficas

Walters EM, Wolf E, Whyte JJ, Mao J, Renner S, Nagashima H, et al. Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics. 2012;5:55. https://doi.org/10.1186/1755-8794-5-55

Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB, et al. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;295:L240-63. https://doi.org/10.1152/ajplung.90203.2008

Bruun CS, Jensen LK, Leifsson PS, Nielsen J, Cirera S, Jørgensen CB, et al. Functional characterization of a porcine emphysema model. Lung. 2013;191:669-75. https://doi.org/10.1007/s00408-013-9504-2

Borges JB, Costa EL, Suárez-Sipmann F, Widström C, Larsson A, Amato M, et al. Early inflammation mainly affects normally and poorly aerated lung in experimental ventilatorinduced lung injury. Crit Care Med. 2014;42:e279-87. https://doi.org/10.1097/CCM.0000000000000161

Kita YF, Ando A, Tanaka K, Suzuki S, Ozaki Y, Uenishi H, et al. Application of highresolution, massively parallel pyrosequencing for estimation of haplotypes and gene expression levels of swine leukocyte antigen (SLA) class I genes. Immunogenetics. 2012;64:187-99. https://doi.org/10.1007/s00251-011-0572-2

Snell GI, Paraskeva M, Westall GP. Donor selection and management. Semin Respir Crit Care Med. 2013;34:361-70. https://doi.org/10.1055/s-0033-1348464

Karimi A, Cobb JA, Staples ED, Baz MA, Beaver TM. Technical pearls for swine lung transplantation. J Surg Res. 2011;171:e107-11. https://doi.org/10.1016/j.jss.2011.05.067

Collins AM, Rylance J, Wootton DG, Wright AD, Wright AK, Fullerton DG, et al. Bronchoalveolar lavage (BAL) for research; obtaining adequate sample yield. J Vis Exp. 2014. https://doi.org/10.3791/4345

Bufalari A, De Monte V, Pecoriello R, Donati L, Ceccarelli S, Cagini L, et al. Experimental left pneumonectomy in pigs: Procedure and management. J Surg Res. 2015;198:208-16. https://doi.org/10.1016/j.jss.2015.05.045

Lama VN, Belperio JA, Christie JD, El-Chemaly S, Fishbein MC, Gelman AE, et al. Models of lung transplant research: A consensus statement from the National Heart, Lung, and Blood Institute workshop. JCI Insight. 2017;2:1-14. https://doi.org/10.1172/jci.insight.93121

Cypel M, Liu M, Rubacha M, Yeung JC, Hirayama S, Anraku M, et al. Functional repair of human donor lungs by IL-10 gene therapy. Sci Transl Med. 2009;1:1-9. https://doi.org/10.1126/scitranslmed.3000266

Daggett CW, Yeatman M, Lodge AJ, Chen EP, Linn SS, Gullotto C, et al. Total respiratory support from swine lungs in primate recipients. J Thorac Cardiovasc Surg. 1998;115:19-27. https://doi.org/https://doi.org/10.1016/S0022-5223(98)70438-6

Hartmann JF, Hutchison CF, Jewell ME. Pig bronchial mucous membrane: A model system for assessing respiratory mucus release in vitro. Exp Lung Res. 1984;6:59-70.

Hartert M, Senbaklavacin O, Gohrbandt B, Fischer BM, Buhl R, Vahld CF. Lung transplantation: A treatment option in end-stage lung disease. Dtsch Arztebl Int. 2014;111:107-16. https://doi.org/10.3238/arztebl.2014.0107

Haworth SG, Hislop AA. Adaptation of the pulmonary circulation to extra-uterine life in the pig and its relevance to the human infant. Cardiovasc Res. 1981;15:108-19.

Davies G, Reid L. Growth of the alveoli and pulmonary arteries in childhood. Thorax. 1970;25:669-81. https://doi.org/10.1136/thx.25.6.669

Florens M, Sapoval B, Filoche M. An anatomical and functional model of the human tracheobronchial tree. J Appl Physiol (1985). 2011;110:756-63. https://doi.org/10.1152/japplphysiol.00984.2010

Maina JN, van Gils P. Morphometric characterization of the airway and vascular systems of the lung of the domestic pig, Sus scrofa: comparison of the airway, arterial and venous systems. Comp Biochem Physiol A Mol Integr Physiol. 2001;130:781-98. https://doi.org/10.1016/S1095-6433(01)00411-1

Cohen BS, Sussman RG, Lippmann M. Factors affecting distribution of airflow in a human tracheobronchial cast. Respir Physiol. 1993;93:261-78.

Noble PB, McLaughlin RA, West AR, Becker S, Armstrong JJ, McFawn PK, et al. Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography. Respir Res. 2010;11:9. https://doi.org/10.1186/1465-9921-11-9

Menkes HA, Macklem PT. Collateral Flow. Suppl 12. Handbook of Physiology, The Respiratory System, Mechanics of Breathing. 2011. Wiley Online Library. p. 337-53. https://doi.org/10.1002/cphy.cp030321

Peake JL, Pinkerton KE. Gross and subgross anatomy of lungs, pleura, connective tissue septa, distal airways, and structural units A2. In: Parent RA, Elsevier Inc. Comparative biology of the normal lung. Second edition. San Diego: Academic Press; 2015. p. 21-31. https://doi.org/10.1016/B978-0-12-404577-4.00003-5

Woolcock AJ, Macklem PT. Mechanical factors influencing collateral ventilation in human, dog, and pig lungs. J Appl Physiol. 1971;30:99-115. https://doi.org/10.1152/jappl.1971.30.1.99

Nakakuki S. Bronchial tree, lobular division and blood vessels of the pig lung. J Vet Med Sci. 1994;56:685-9.

Siegel MJ, Shackelford GD, Francis RS, McAlister WH. Tracheal bronchus. Radiology. 1979;130:353-5. https://doi.org/10.1148/130.2.353

Dondelinger RF, Ghysels MP, Brisbois D, Donkers E, Snaps FR, Saunders J, et al. Relevant radiological anatomy of the pig as a training model in interventional radiology. Eur Radiol. 1998;8:1254-73. https://doi.org/10.1007/s003300050545

Schummer A, Nickel R, Sack WO. The viscera of the domestic mammals. Berlín: Springer-Verlag; 1979. p. 211- 279.

Amis TC, McKiernan BC. Systematic identification of endobronchial anatomy during bronchoscopy in the dog. Am J Vet Res. 1986;47:2649-57.

Boyden EA. Segmental anatomy of the lungs: A study of the patterns of the segmental bronchi and related pulmonary vessels. New York and London: McGraw-Hill; 1955. p. 108.

Judge EP, Hughes JM, Egan JJ, Maguire M, Molloy EL, O'Dea S. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine. Am J Respir Cell Mol Biol. 2014;51:334-43. https://doi.org/10.1165/rcmb.2013-0453TR

Jones TC, Hunt RD, King NW. Veterinary pathology. Baltimore: Lippincott Williams & Wilkins; 1997. 1392 p.

Baskerville A. Histological and ultrastructural observations on the development of the lung of the fetal pig. Acta Anat (Basel). 1976;95:218-33.

Crews A, Taylor AE, Ballard ST. Liquid transport properties of porcine tracheal epithelium. J Appl Physiol. 2001;91:797-802.

Liu X, Luo M, Zhang L, Ding W, Yan Z, Engelhardt JF. Bioelectric properties of chloride channels in human, pig, ferret, and mouse airway epithelia. Am J Respir Cell Mol Biol. 2007;36:313-23. https://doi.org/10.1165/rcmb.2006-0286OC

Cómo citar
1.
Fernández L, Velásquez M, Sua LF, Cujiño I, Giraldo M, Medina D, et al. El biomodelo porcino en la investigación médica traslacional: del biomodelo al humano en trasplante pulmonar. biomedica [Internet]. 15 de junio de 2019 [citado 28 de marzo de 2024];39(2):300-13. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/3820

Algunos artículos similares:

Publicado
2019-06-15
Sección
Artículos originales

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code