Expansión clónica y caracterización genómica del proceso de integración del virus linfotrópico humano tipo I en la leucemia/linfoma de células T en adultos

Mercedes Salcedo-Cifuentes, Jesús Cabrera, Yesid Cuesta-Astroz, Edwin Carrascal, Yoshito Eizuru, Martha C. Domínguez, Adalberto Sánchez, Felipe García-Vallejo, .

Palabras clave: integración viral, virus linfotrópico de células T humanas tipo 1, leucemia/linfoma de células T en adultos, reacción en cadena de la polimerasa, genoma humano, biología computacional

Resumen

Introducción. Aunque la integración del virus linfotrópico humano tipo I no es al azar, se desconocen muchos de los detalles de este proceso.
Objetivo. Evaluar las características de la cromatina celular adyacente a secuencias provirales en pacientes con leucemia/linfoma de células T en adultos asociada al virus.
Materiales y métodos. Se extrajo el ADN de biopsias de siete pacientes colombianos con leucemia/linfoma de células T en adultos y positivos para el virus linfotrópico humano tipo I. Éste se amplificó mediante reacción inversa en cadena de la polimerasa, para determinar el grado de expansión clónica y su composición de nucleótidos. A partir de 61 secuencias de ADN humano adyacentes a provirus, provenientes de pacientes leucémicos colombianos y japoneses, se efectuó un análisis in silico para obtener datos sobre su integración, las características de la cromatina y sus funciones asociadas.
Resultados. La expansión de clones celulares fue predominantemente oligoclónica. De las 61 secuencias de ADN adyacente a provirus, se seleccionaron 155 alineamientos que cumplieron con los criterios de inclusión (homologías≥95%, e-value≤0,05). De éstos, 74,84% fueron secuencias no codificantes repetidas y no repetidas. El 45,95% de las integraciones provirales se localizó en los cromosomas de los grupos A y B. Se observaron tendencias de integración hacia exones de genes que se replican tempranamente, regulan el ciclo celular y participan en la transducción de señales.
Conclusiones. Los resultados permiten postular que la integración del virus linfotrópico humano tipo I se dirigiría hacia un ambiente genómico caracterizado por elevado contenido de C:G, genes de replicación temprana que regularían el ciclo celular y la transducción de señales.

Descargas

Los datos de descargas todavía no están disponibles.
  • Mercedes Salcedo-Cifuentes Laboratorio de Biología Molecular y Patogénesis, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
  • Jesús Cabrera Laboratorio de Biología Molecular y Patogénesis, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali, Colombia. Facultad de Ciencias, Universidad de Nariño, Pasto, Colombia
  • Yesid Cuesta-Astroz Laboratorio de Biología Molecular y Patogénesis, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
  • Edwin Carrascal Departamento de Patología, Facultad de Salud, Universidad del Valle, Cali, Colombia
  • Yoshito Eizuru Center for Chronic Viral Diseases, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
  • Martha C. Domínguez Laboratorio de Biología Molecular y Patogénesis, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
  • Adalberto Sánchez Laboratorio de Biología Molecular y Patogénesis, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
  • Felipe García-Vallejo Laboratorio de Biología Molecular y Patogénesis, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Cali, Colombia

Referencias bibliográficas

1. Poiesz BJ, Ruscetti FW, Gadzar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 1980;77:7415-9.
2. Edlich RF, Arnette JA, Williams FM. Global epidemic of human T-cell lymphotropic virus type-I (HTLV-I). J Emerg Med. 2000;18:109-19.
3. Quintana M, Villalobos J, Domínguez M, Tamayo O, García-Vallejo F. Estudio de la seroprevalencia de la infección por los virus linfotrópicos humanos (HTLV) I y II en poblaciones del departamento de Córdoba, Colombia. Colombia Médica. 2004;35:22-30.
4. García-Vallejo F. Caracterización molecular y genómica del proceso de integración del provirus del virus linfotropico humano (HTLV) tipo I. Rev Acad Colomb Cienc. 2006;30:155-70.
5. Yoshida M, Seiki M, Yamaguchi K, Takatsuki K. Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in the disease. Proc Natl Acad Sci USA.1984;81:2534-7.
6. Yoshida M. Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol. 2001;19:475-96.
7. Leclerq I, Mortreux F, Gabet AS, Jonson CB, Wattel E. Basis of HTLV type I site selection. AIDS Res Hum Retroviruses. 2000;16:1653-9.
8. Zoubak S, Richardson J, Rynditch AV, Hollsberg P, Hafler DA, Boeri E, et al. Regional specificity of HTLV-I proviral integration in the human genome. Gene. 1994;143:155-63.
9. Glukhova LA, Zoubak SV, Rynditch AV, Miller GG, Titova IV, Vorovyeva N, et al. Localization of HTLV-1 and HIV-1 proviral sequences in chromosomes of persistently infected cells. Chromosome Res.1999;7:177-83.
10. Richarsond JH, Rose NJ, Mann S, Ferguson-Smith M, Lever AM. Chromosomal positioning of human T-lymphotropic type I proviruses by fluorescent in situ hybridisation. J Virol Methods. 2001;93 65-74.
11. Saccone S, De Sario A, Wiegant J, Raap AK, Della-Valle G, Bernardi G. Correlations between isochores and chromosomal bands in the human genome. Proc Natl Acad Sci USA. 1993;90:11929-33.
12. Woodfine K, Fiegler H, Beare DM, Collins JE, McCann OT, Young BD, et al. Replication timing of the human genome. Hum Mol Genet. 2004;13:191-202.
13. Saccone S, Cacciò S, Kusuda J, Andreozzi L, Bernardi G. Identification of the gene-richest bands in human chromosomes. Gene. 1996;174:85-94.
14. Kim MA, Johannsmann R, Grzeschik KH. Giemsa staining of the sites replicating DNA early in human lymphocyte chromosomes. Cytogenet Cell Genet. 1975;15:363-71.
15. Federico C, Saccone S, Bernardi G. The gene-richest bands of human chromosomes replicate at the onset of the S-phase. Cytogenet Cell Genet. 1998;80:83-8.
16. Albrecht B, Lairmore MD. Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis. Microbiol Mol Biol Rev. 2002;66:396-406.
17. Yasunaga JI, Matsuoka M. Human T-cell leukemia virus type I induces adult T-cell leukemia: From clinical aspects to molecular mechanisms. Cancer Control. 2007;14:133-40.
18. Albrecht B, Collins ND, Burrinstom MT, Nisbet JW, Ratner L, Green PL, et al. Human T-lymphotropic virus type I open reading frame I p12(I) is required for efficient viral infectivity in primary lymphocytes. J Virol. 2000;74:9828-35.
19. Bindhu M, Nair A, Lairmore MD. Role of accessory proteins of HTLV-1 in viral replication, T cell activation, and cellular gene expression. Front Biosci. 2004;9: 2556-76.
20. Carrascal E, Cortés A, Akiba S, Tamayo O, Quiñónez F, Floréz L, et al. Epidemiología y patología de la leucemia/linfoma de células T del adulto en Cali y el suroccidente colombiano. Colombia Médica. 2004;35:12-7.
21. República de Colombia. Ministerio de Salud. Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud Resolución No 008430 de octubre 4 de 1993. Bogotá: Ministerio de Salud; 1993.
22. Sambrook J, Fritzch EF, Maniatis T. Molecular cloning. A laboratory manual. New York: Ed. Cold Spring Harbor Press; 1989.
23. Seiki M, Hattori S, Hirayama Y, Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci USA. 1983;80:3618-22.
24. Feinberg AP, Vogelstein B. Technique for radiolabeling of restriction endonuclease fragments. Anal Biochem. 1983;132:6-13.
25. Miyoshi I, Kubonishi I, Yoshimoto S, Akagi T, Ohtsuki Y, Shiraishi Y, et al. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature.1981;294:770-1.
26. Takemoto S, Matsuoka M, Yamaguchi K, Takatsuki K. A novel diagnostic method of adult T-cell leukemia: Monoclonal integration of human T-cell lymphotropic virus type I provirus DNA detected by inverse polymerase chain reaction. Blood. 1994;84:3080-5.
27. Cavrois M, Gessain A, Wain-Hobson S, Wattel E. Proliferation of HTLV-I infected circulating cells in vivo in all asymptomatic carries and patients with TSP/HAM. Oncogen. 1996;12:2419-23.
28. Cabrera J, García-Vallejo F. Aumento del número de amplicones obtenidos por IPCR en el ADN de personas seropositivas para HTLV-I afectadas con PET/HAM. Colombia Médica. 2000;31:169-75.
29. Ozawa T, Itoyama T, Sadamori N, Yamada Y, Hata T, Tomonaga M, et al. Rapid isolation of viral integration site reveals frequent integration of HTLV-1 into expressed loci. J Hum Genet. 2004;49:154-29.
30. STATA CORP. Stata Statistical Software: Release 8.0. College Station TX: Stata Corporative; 2000.
31. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291:1304-51.
32. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860-921.
33. Blank A. Adult T-cell leukemia/lymphoma in southwest Colombia. En: HTLV, truths and questions. Cali: Edit Zaninovic; 1996. p. 266-71.
34. Wattel E, Vartanian JP, Pannetier CH, Wain-Hobson S. Clonal expansión of human T-cell leukemia and symptomatic carries without malignancy. J. Virol. 1995;69:2863-8.
35. Wattel E, Cavrois, Gessain MA, Wain-Hobson S. Clonal expansion of infected cells –a way of life for HTLV-I. J Acquir Immune Defic Syndr Hum Retrovirol. 1996;13(Supl.1):92-9.
36. Doi K, Wu X, Taniguchi Y, Yasunaga J, Satou Y, Okayama A, et al. Preferential selection of human T-cell leukemia virus type I provirus integration sites in leukemic versus carrier status. Blood. 2005;106:1048-53.
37. Hanai S, Nitta T, Shoda M, Tanaka M, Iso N, Mizoguchi I, et al. Integration of human T-cell leukemia virus type 1 in genes of leukemia cells of patients with adult T-cell leukemia. Cancer Sci. 2004;95:306-10.
38. Spence JM, Mills W, Mann K, Huxley C, Farr CJ. Increased missegregation and chromosome loss with decreasing chromosome size in vertebrate cells. Chromosoma. 2006;115:60-74.
39. Leclercq I, Mortreux F, Cavrois M, Leroy A, Gessain A, Wain-Hobson S, et al. Host sequences flanking the human T-cell leukemia virus type 1 provirus in vivo. J Virol. 2000;74:2305-12.
40. Oliver JL, Carpena P, Román-Rolatán R, Mata-Balaguer T, Mejias-Romero A, Hackenberg M, et al. Isochore chromosome maps of the human genome. Gene. 2002;300:117-27.
41. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998; 396:643-9.
42. Pavlícek A, Jabbari K, Paces J, Paces V, Hejnar J, Bernardi G. Similar integration but different stability of Alus and LINEs in the human genome. Gene. 2001;276:39-45.
43. Tsuji T, Sugahara K, Tsuruda K, Uemura A, Harasawa H, Hasegawa H, et al. Clinical and oncologic implications in epigenetic down-regulation of CD26/dipeptidyl peptidase IV in adult T-cell leukemia cells. Int J Hematol. 2004;80:254-60.
44. Derce D, Crise B, Li Y, Princler G, Lum N, Stewart C, et al. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J Virol. 2007;81:6731-41.
45. Agbottah E, Deng L, Dannenberg LO, Pumfery A, Kashanchi F. Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Retrovirology. 2006;3:48-67.
46. Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004;2:1127-37.
47. Wu X, Burgess S M. Integration target site selection for retroviruses and transposable elements. Cell Mol Life Sci. 2004;61:2588-96.
48. Versteeg R, van Schaik BD, van Batenburg MF, Roos M, Monajemi R, Caron H, et al. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly wxpressed genes. Genome Res. 2003;13:1998-2004.
Cómo citar
1.
Salcedo-Cifuentes M, Cabrera J, Cuesta-Astroz Y, Carrascal E, Eizuru Y, Domínguez MC, et al. Expansión clónica y caracterización genómica del proceso de integración del virus linfotrópico humano tipo I en la leucemia/linfoma de células T en adultos. biomedica [Internet]. 1 de junio de 2009 [citado 28 de marzo de 2024];29(2):218-31. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/24

Algunos artículos similares:

Sección
Artículos originales

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code